

Resolute User Manual

Telemetered GNSS Receiver

Shipped From

Contact Us

Email support@xeostech.com
Phone +1 (902) 444-7650
Website xeostech.com

Specifics

This manual version is written with respect to Resolute firmware build 12923. To acquire the latest firmware for your device, contact support@xeostech.com

Version History

Version No.	Firmware Ver.	Date	Description
1.1	1.1.4147	Nov 2017	RTK Details Added
1.3	1.1.4641	July 2018	Tunnel Details Added, New Firmware Features
			added
1.4	1.1.4769	Sept 2018	ASCII External Sensor Recording Added
1.5	1.1.4769	Jan 2019	Improved manual graphics
2.0	1.1.5205	Jan 2019	File Stream Buffering, XBD
2.1	1.1.5222	March 2019	Real Time Streaming: RTCM over cell
2.2	1.1.5504	June 2019	Ethernet functionality added
2.4	1.1.6272	Feb 2020	Memory Management functionality added
2.5	1.1.6702	Oct 2020	Hardware version upgrade
3.0	1.1.12923	Aug 2025	Rewrite and rebrand

Table of Contents

Overview	5
Device Configurations	5
Polar	5
Reference	5
RTK Base Receiver	6
RTK Rover Receiver	6
NorthStar	6
Device Theory of Operation	7
GNSS Receiver Theory of Operation	7
SD Cards & SRAM Theory of Operation	7
Tunnel Theory of Operation	9
SBD: Theory of Operation	10
XBD: Theory of Operation	10
Interfacing for Device Configuration	12
USB Diagnostic Port	12
Using STerm and Sending Commands	13
Configuration Commands	15
Time & Schedule Methodology	15
Using the Scheduler Commands	15
SD Memory Management	17
Auto-Deletion of Data	17
SD Card Reformatting	17
Auto-Shutdown Voltage	18
GNSS Configuration	19
Configuring GNSS Settings with XeosOnline	19
GNSS Signal Tracking	20
GNSS Message Types	20
Collecting RINEX Data	21
Configuring Base Station GNSS Correction Output	22
Radio Configuration	23
RTK Radio Network Design	23

Configuring the Cell Modem	26
IP Tunnel Configuration	27
Using IP Tunnel	28
Automatic File Retrieval (Auto-Downloader)	28
SBD, SMS & XBD Configuration	29
Ethernet Configuration	30
Accessing the HTTP Server	31
Operating the HTTP Client	31
Manual File Retrieval via Ethernet	31
GNSS Configuration via Ethernet	31
Resolute Telnet Server via Ethernet	31
Switch Power Configuration	32
Scheduled Switched Power	32
One-Time Switching	32
SDI-12 Master Interface	33
ASCII External Sensor Interface	34
Serial 2 Data Relay	35
Device Preparation	36
Physical Interfaces	36
Installing Power	37
Removable Door: SD Card Access and SIM Installation	37
Retrieving SD Cards	38
Installing the Iridium SIM	39
Installing the Cell micro-SIM	40
Test Button	41
LED Behavior	41
Installing a Resolute	43
RTK Radio Network Design	43
Installing the GNSS Antenna	43
Installing the Radio Antenna	44
Installing the Cell Antenna	45
Installing the Iridium Antenna	45
Installing RF Cables	45

Setting the Base Position (Base Stations Only)	45
Confirming Device Operation	46
Power to the Resolute	46
SD Cards Mounted	46
GNSS Receiver Operation	46
RTK Radio Operation (Base)	46
RTK Radio Operation (Rover)	46
Cell Operation	47
Iridium Operation	47
Xeos Online	48
Sending XBDs and SBDs Using XeosOnline	48
Resolute Messages on XeosOnline	49
Power-up	49
Status of Health	49
Upgrading Firmware	51
Appendix A: Command Index	53
Appendix B: Antenna Type Index	60
Appendix C: GNSS Antenna Mount Diagram	64
Appendix D: RF Cable Installation Diagram Example	65
Appendix E: Example RTK Network Map	66
Appendix F: Mechanical Specifications	67
Appendix G: Electrical Specifications	68
Appendix H: RxTools Download	69
Appendix I: Iridium Service	69
Appendix J: Connector Pinouts	70
Circular Connector, 14-Pin Female	70
Circular Connector, 10-Pin Female	71
Warranty, Support and Limited Liability	72

Overview

The Resolute GNSS Receiver is an autonomous low power GNSS receiver with L1/L2 GPS and GLONASS tracking abilities. Optionally, other satellite constellations and frequencies may be added. The Resolute is driven by a flexible GNSS modem capable of RTK or Standalone data collection.

Telemetry options aside from the installed GNSS hardware include:

- Iridium 9523 transceiver
- Cellular modem
- 900 MHz Radio

The Resolute is housed in a rugged enclosure and includes redundant SD cards capable of logging outputs from external sensors along with GNSS data.

The Resolute records GNSS data in the **Septentrio Binary Format (SBF)**. Any blocks listed in the SBF Reference Guide can be recorded at a configurable rate.

Device Configurations

The Resolute is a flexible and powerful platform that comes in many different configurations. Therefore, this manual will cover varying subjects that do not apply in all applications.

Separate permission files are required for specific Resolute GNSS features, such as raw measurements, Base station corrections, or some signals such as Galileo.

Note: Not all Resolutes contain the same permissions; configuring the GNSS to record specific message types or track specific signals without these permissions will cause the Asterx to fail at configuration. Changing these settings where appropriate will restore operation.

Contact sales or support for further clarification on which units contain which features.

Polar

The Polar Resolute is designed to operate in cold environments, utilizing internal heaters to allow for such a deployment. Telemetry typically utilizes an Iridium 9523 modem for RUDICS Tunnel and SBD telemetry, but can also be ordered with a Cell modem for Cell XBD and Tunnel in place or in addition of the standard.

Reference

The Resolute Reference Receiver is a GNSS receiver capable of recording raw GNSS measurements along with standalone PVT (Position, Velocity, Time) data and many other SBF blocks. It is designed to operate without any real-time corrections and can record data for post processing. It does not utilize the other telemetry systems.

RTK Base Receiver

The RTK Base station is a correction generator for RTK (real time kinetic) measurements. A single base station properly configured can broadcast a correction service to one or more RTK Rovers, equipped with a 900MHz radio or a connection to the internet via Ethernet.

An RTK Base roughly measures an initial base position and then measures deviations from this position to generate corrections. The Base operates on the assumption that the Base antenna is **not** moving.

RTK Rover Receiver

The RTK Rover is the measurement and data collection sensor companion to the RTK Base Receiver. Depending on the data filter length (at receiver) and response time necessary, it is capable of measuring deviations on centimeter or millimeter levels, when properly serviced with corrections. The RTK Rover should be mounted to the desired landmark of whose movement is to be measured.

NorthStar

The NorthStar is a correction repeater and communications unit that has two primary functionalities relating to RTK receivers:

- A correction relay unit to overcome geographical issues such as distance and topography between the RTK Base and RTK Rover.
- A collection point for RTK Rover data; the NorthStar can be attached to a server or doghouse computer and relay 30-second averaged positions from any RTK Rovers in the radio network.

While the theory of operation is similar and related to the Resolute, the NorthStar is covered in a <u>separate manual</u>.

Device Theory of Operation

The Resolute at its heart is an embedded peripheral control unit. Each enabled peripheral, including the GNSS, is controlled by the scheduler, which can be configured by the user.

Each peripheral has three separate timer settings to build the schedule:

- duration, the length of time the peripheral is on
- interval, how often a peripheral is on
- offset, moves the start of the task by the specified amount of time.

Using these three parameters, the timing of powering the peripherals can be controlled.

Some peripherals (ex. GNSS) can be set to always-on by setting the duration to zero:

\$gnssSetDuration 0s

GNSS Receiver Theory of Operation

The GNSS receiver onboard the Resolute outputs configurable Septentrio Binary Format (SBF) blocks at a configurable rate. The Resolute can subdivide these outputted blocks into four file **streams**. Individual streams are recorded to their own files, and have the ability to record SBF blocks at different rates across streams.

The files produced from streams are individually configurable in length. Data generated by the GNSS receiver are saved to the SD cards installed inside the Resolute.

Use the \$gnssSetMessageType command to configure streams.

XeosOnline can be used to set GNSS settings easily; see the section lower in this document.

SD Cards & SRAM Theory of Operation

To upgrade to firmware version 5200+ from a lower version number, please verify SRAM is installed on the device to be updated by contacting Xeos.

Data written to the SD cards is initially written to circular buffers in SRAM as of firmware version 5200. SRAM buffering allows for higher data recording rates, and greater data verification. Data is assigned a buffer based on the configuration of the data streams, with Streams 1 and 3 writing to Card 1, and Streams 2 and 4 writing to Card 2.

An SRAM buffer will empty its contents to its respective SD card when the buffer reaches **70%** full. While the file is being written to, the file is 'open' on the device; this makes it extremely important to notify the device when it is to be shut it down.

Proper shut down etiquette is to either send the device a **\$resetnow** command or to hold the test button for 3+ seconds. Failure to do so will cause the file to be left open. Open files are partially recoverable on a computer provided they are not written over.

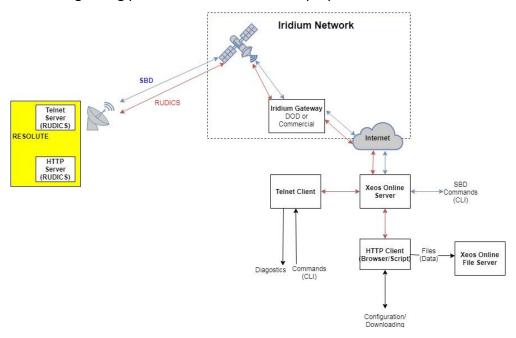
Files written to the SD card use a naming convention with an ASCII representation of BASE-36 characters with the following name format:

SSFYYMDH.sbf

SS	Two-character representation of device serial number
F	Stream Source (1-4, D (Diagnostics))
YY	Two-character representation of year
M	Month of year
D	Day of Month
Н	Hour of Day

Example: 2T10FATC.sbf

Serial #	2T = 101
Stream	1 = 1
Year	0F = 15 (2015)
Month	A = 10 (October)
Day	T = 29
Hour	C = 12


The GNSS SBF files follow the format outlined in the Septentrio SBF Reference Guide.

Data recorded to the SD card is by default managed by a <u>memory management</u> task. Data is recorded until the memory management task detects the card is 90% full, at this point the oldest 10% of data will be deleted. This task can be turned off on a per card basis. Read about this in the <u>SD Memory management Section</u> of the manual.

Tunnel Theory of Operation

If the Resolute is equipped with a cellular modem or Iridium modem and a data or RUDICS plan, your unit is capable of remotely connecting to the Xeos Tunnel. The Tunnel is useful for configuring your unit remotely and retrieving data and diagnostics from the SD card remotely. It is also useful for diagnosing potential issues on units deployed in the field.

Iridium Tunnel and SBD Network Diagram

Upon reaching its start time, the tunnel will power on the configured modem and will attempt to open a two way connection to XeosOnline (XO). The tunnel confirms two way operation to XO via a heartbeat message known as a "keep alive". A keep alive is a small data packet sent from the unit to the XO server every 15 seconds and acknowledged by the server. This "keep alive" message manages the connection between the unit and XO irrespective of any sockets being opened by the user or a script. If two packets are unacknowledged in a row, the unit closes the connection and tries to reestablish it.

Keep alive data packets include SOH information about the receiver, including voltage and temperature conditions. Keep alive data packets are also the best way to verify the tunnel is connected when your unit is in a remote location. If keep alives are coming in to the Message Log of the unit every 15 seconds, the tunnel is connected.

Tunnel Keep-Alives in the XeosOnline Message Tab

Tunnel connections over cellular are normally stable (in good cellular coverage). Tunnel connections over Iridium RUDICS will have interruptions under normal operation. The maximum data transfer rate of Iridium RUDICS is 17 KB/min.

The user of the remote device can interact with the device through a number of interface (sockets) into the tunnel. These include an embedded HTTP (Web) Server, automatic download scripts and a Telnet Server. It is possible to open only one socket of the tunnel at a time. Multiple open connections to the tunnel will result in the tunnel disconnecting. The tunnel will reconnect after disconnecting provided the tunnel end time is not met. See Appendix I for information on setting up Iridium Service.

SBD: Theory of Operation

SBD (Short Burst Data) is a low cost, low power method of communicating remotely with a Resolute if an Iridium modem is installed. SBDs are the Iridium equivalent of a text message (SMS).

The Resolute schedules SBD message checks using the scheduler. At the scheduled interval, the unit will transmit Status of Health (SOH) data, then check for commands from the Iridium gateway.

SBDs cannot be sent at the same time as RUDICS tunnels are scheduled. If an SBD message check is scheduled during a tunnel connection, it will be executed upon the tunnel reaching its end time. Any messages sent to the Resolute between SBD tasks will wait at the Iridium gateway for the unit to check in.

The Resolute requires an unlock code with any commands prevent undesired control. Unlock codes are sent out to the provisioned addresses of the modem on start-up. Unlock codes are automatically included with SBD commands sent via XeosOnline.

XBD: Theory of Operation

XBD (Xeos Burst Data) is Xeos' cellular answer to the Iridium SBD (Short Burst Data). XBD utilizes the IP connection of the cell modem to send short amounts of data remotely with the Resolute if a cellular modem is installed.

XBD has the advantage, in contrast to SMS, of having responses logged on XeosOnline for later analysis or graphing. XBD commands can also be sent to the Resolute from any country in the world without an international texting plan; only a local data plan is required.

The Resolute schedules XBD tasks using the scheduler in the same manner as other tasks. At a scheduled interval, the unit will check transmit messages, and check for commands at the XeosOnline server.

XBDs cannot be sent at the same time as a tunnel is scheduled. If an XBD task is scheduled during a tunnel connection, it will be executed upon the tunnel reaching its end time. Any messages sent by the user between XBD tasks will wait on the XeosOnline server for the unit to check in.

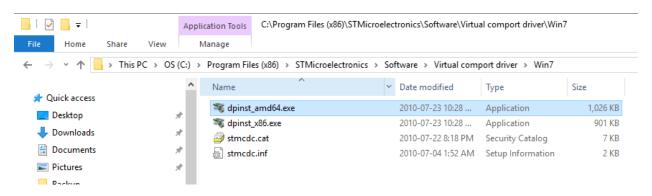
The Resolute requires an unlock code with any commands prevent undesired control. Unlock codes are sent out to the provisioned addresses of the modem on start-up. Unlock codes are automatically included with XBD commands sent via XeosOnline.

Interfacing for Device Configuration

All of the settings on the Resolute can be configured either by connecting one of the diagnostic ports to a serial port terminal, the USB port, or by sending configuration commands from a remote location over the Iridium Satellite Network or Cellular, depending on installed telemetry options. If configuring the unit locally, USB is recommended.

USB Diagnostic Port

All the settings on the Resolute can be configured by connecting the USB diagnostic port to a USB port on a computer.

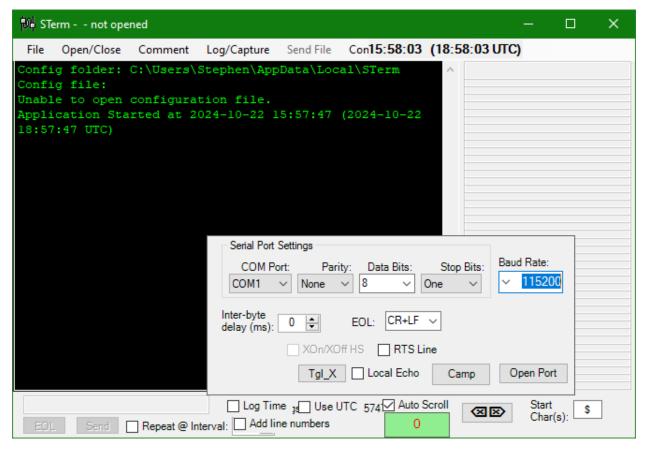

To connect to the USB diagnostic port, if using a Windows PC, you may need to download a driver for the STM32 USB chip contained in the unit. The driver can be found here:

HTTP://www.st.com/en/development-tools/stsw-stm32102.html

Windows 10 Users: The Windows 7 and 8 drivers are functional for Windows 10, but will not auto install. Download the drivers and install the dpinst_amd64.exe file located at:

C:\Program Files (x86)\STMicroelectronics\Software\Virtual comport driver\Win7\dpinst_amd64.exe

Modern Linux and Mac operating systems already support the driver.

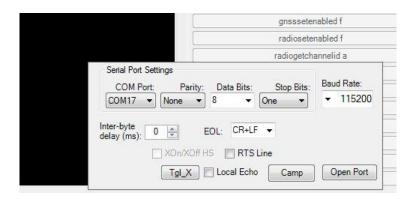

After downloading and installing the driver, connect the supplied USB mini cable between the Resolute and your computer. Your computer will assign the Resolute a COM port number (Windows only) that will show up under ports in the Windows Device Manager. If the device is not recognized, check the driver the device is implementing.

To communicate with the Resolute, a serial port terminal program is required. **Xeos recommends STerm, a Windows-only product**. A free alternative for Linux and Mac is PuTTY. STerm can be downloaded here:

Port Settings - USB		
Baud Rate	Any	
Data Bits	8	
Parity	None	
Stop Bits	1	
Flow Control	Disabled	

Using STerm and Sending Commands

An STerm Window


STerm is the officially supported serial port terminal program of Xeos.

STerm can load configuration files to allow the commands for Xeos products to appear as buttons on the right side of the window. This can be done through the **FILE > OPEN** menu and opening the Resolute Config File.stm file. This is available to download here:

To open a connection to the device, power it on by applying 12V power using the supplied power cable and a DC power source. LEDs will flash on power up.

Wait for the computer to recognize the device driver. Select the COM port of the device from the Serial Port Settings menu in the bottom right corner of the screen. Click the open port button to connect to the unit. The buttons that appear on the right side of the window can be clicked and will send commands to the unit.

STerm Serial Port Settings Menu

The buttons on the right side of the window can be edited to change the input variable you are sending to the device. This is done by hovering over the right side of the button and then clicking the green edit button. Type your changes into the button then move your mouse away to end the edit.

The Edit icon of the command buttons

When connecting to a device, the diagnostics can flow too quickly to read, especially when not familiar with the output. To confirm commands are correctly received by the unit, it is recommended to disable the Radios and GNSS, which are the primary diagnostic generating peripherals in the unit. This can be done with the commands **\$radioSetEnabled f** and **\$gnssSetEnabled f**.

If the radio or GNSS does not disable within 30 seconds (the diagnostics should almost completely stop), reset the unit. Resetting the unit require re-plugging the USB connector and reopen the COM port, depending on the version of Windows.

After disabling the peripherals, send the desired commands and wait for the unit to reply. Reenable the radio **\$radioSetEnabled t**, GNSS **\$gnssSetEnabled t** and reset the unit with the **\$resetNow** command.

Configuration Commands

Time & Schedule Methodology

The timers on the device are powered by an onboard battery backed up by a real time clock (RTC). The RTC is updated from GNSS time to compensate for drift. The RTC continues to tick while the device is powered off and operates in the UTC timeframe.

Note: It is possible to shift to the GPS/GNSS time scale (i.e. discount leapseconds) by utilizing the command **\$gnssSetUseGnssTime T**

All scheduled peripherals are controlled by four separate settings: *enabled*, *duration*, *interval* and *offset*.

- **Enabled** controls if the peripheral is active and scheduled.
- **Duration** is the length of time the peripheral is on.
- Interval is the how often the device comes on.
- Offset offsets the interval by the specified amount of time.

Peripherals must be enabled or disabled using **\$(peripheral)SetEnabled T/F**. For example, the following setting will enable the GNSS module:

\$gnssSetEnabled T

When adjusting the scheduled settings, the time input can take form of seconds (s), minutes (m), hours (h) or days (d). If no units are given, the value is interpreted as **seconds**. For example, **3** hours would be entered as **3h**.

To set the duration to be infinite (always on), simply set the duration time to 0.

The next start and end time of various peripherals and tasks can be queried using the **\$schedule** command over the serial connection (not available over Iridium/Cell). If a task or peripheral is not on the schedule, it is not enabled. If no scheduled tasks or peripherals are enabled, the Resolute will return **No Tasks Running!** While previous versions of firmware will return no response.

Using the Scheduler Commands

Below are examples of configuring scheduled tasks. While the GNSS is being used in these examples, the same commands with different identifiers (tunnel, radio, sdi12Master etc.) are used for all other system scheduling.

The *duration* parameter specifies the length of time a peripheral is on. This timer can range from 30 seconds to always on (infinite). To change this timer, issue the following command:

\$gnssSetDuration [duration]

\$gnssSetDuration 3h

The *interval* timer is the length of time between the on-periods of the task (start of one period to start of next).

\$gnssSetInterval [interval]

\$gnssSetInterval 1d

The *offset* timer is the length of time the interval timer is offset from the top of the hour or UTC Day, depending on the already set task interval.

\$gnssSetOffset [offset]

For example, to start a task using a daily interval at **13:20 UTC**, this command would be used:

\$gnssSetOffset 800m

Working Example:

A Resolute is required to record data for **20 minutes** every **two hours** for plate subsidence. For this application, the GNSS duration would be set to **20m** while the interval would be set to **2h**. The following commands would be sent to achieve this:

\$gnssSetEnabled T

\$gnssSetDuration 20m

\$gnssSetInterval 2h

SD Memory Management

Auto-Deletion of Data

The data collected by the Resolute is written to two microSD cards. As the data generated by the Resolute fills the card, the default memory management scheme will automatically delete files.

The memory management system measures the filled space on the cards. If an SD card is over 90% full, the Resolute deletes the oldest dated files until the SD card is less than 80% full.

Memory management can be disabled, but comes with its own risks:

\$SdSetMemoryManagement F

If Memory Management is disabled and the memory cards are full, **no new data will be written to the SD Cards**. If the task is enabled, the task can be assigned specific cards to operate on, on a per card basis:

\$MemoryManagementSetDisks value

Value	SD Card Auto Delete
1	Card 1 Only
2	Card 2 Only
3	Both Cards (Default)

Before firmware 6272, the memory management task could be enabled or disabled with \$SDSetdeleteoldest [T/F]. This command does not exist in 6272 or later.

The lifespan of the files on the card before they are deleted depends on how quickly the card is filling. If only a small amount of GNSS data is being recorded, for instance 1 Hz PVT/PNT data, the files will be present for months. If GNSS data is being recorded at 5 Hz, the data may be present for weeks.

SD Card Reformatting

While it is not necessary for operation, it is possible to re-format the SD cards. This can be done using the "\$formatSD [card#] [filesystem]" command. It is recommended this be done before deployment to maximize available space.

card#	SD Card to Format, 1 or 2.
filesystem	1: Fat32
	2: exFAT; must be used for card sizes over 32GB

To format card 1 as Fat32, the following command would be issued:

\$formatSD 11

Auto-Shutdown Voltage

If operating the Resolute from a low voltage disconnect (LVD), power interruptions can result in the corruption of the SD cards. To protect the cards, the Resolute can be configured to unmount at a set voltage, before the low voltage disconnect cuts power to the device. This setting is **enabled** by default.

The lower shutdown voltage can be set (default 11.5V)

\$setShutdownVoltage value

The shutdown voltage should be set higher than the disconnect voltage of the LVD.

Inversely, Resolutes can also be configured to restart blocked tasks and remount the cards at a higher voltage as power recovers (default 11.699V)

\$setRestartVoltage value

This should be set a few hundred millivolts above the shutdown voltage. The example below works together to protect the SD cards in a case where shutdown voltage is 10.5V and restart voltage is 10.8V.

\$SetShutdownVoltageEnabled T

\$SetShutdownVoltage 10.5

\$SetRestartVoltage 10.8

This entire feature can be disabled, allowing for the cards to remount and the tasks to resume, in the event tasks must be run:

\$setShutdownVoltageEnabled F

If an SD card value in transmitted messages is -1, that card is not mounted to the Resolute; either it is not installed, the door is reading as open, or the voltage is low.

GNSS Configuration

All tasks must be confirmed as enabled to be utilized.

\$gnssSetEnabled T

The current ability of a task to run can be queried by directly requesting, or locally using the **Sschedule** command.

\$gnssGetEnabled

The GNSS antenna type can be configured using

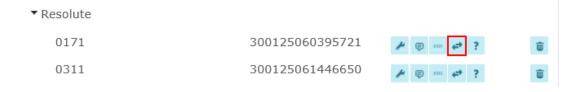
\$gnssSetAntennaType value

This command configures the Antenna Reference Point (ARP) and other settings needed for accurate GNSS measurements. Type is a number corresponding to an antenna index. Common antennas supplied with the Resolute have the following numbers for this command:

Talisman TW3870/2 (default)	0
Septentrio PolaNt-x MF	1

Consult <u>Appendix B</u> for the complete list of antennas. The example below would configure the receiver correctly for the Talisman TW3872:

\$gnssSetAntennaType 0

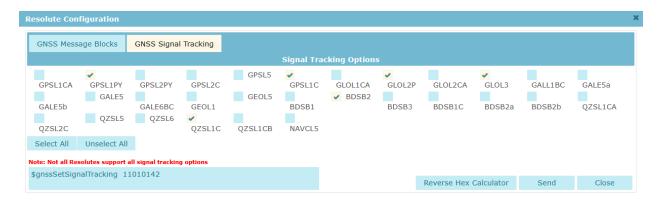

The standard antenna voltage supply is 3.3V, however some antennas require a different voltage supply. Voltage can be increased to 5V using

SgnssSet5vAnt T

Configuring GNSS Settings with XeosOnline

Command line messages can be sent to configure the GNSS blocks the Resolute records, and the signals used to create them. Since these values are given in the form of bitmaps or hex values, they are best formed on XeosOnline using the **Admin** option.

To configure and send the command to a unit, click on the two-directional arrow button under the **Admin** page next to the target device to open the Resolute Configuration window.



GNSS Signal Tracking

Signals that are to be utilized when recording data blocks are configured with:

\$gnssSetSignalTracking HEX

The hex value can be formed and sent by clicking on the **GNSS Signal Tracking** tab, and checking the available signals. The command can be sent directly to the unit through this window using the **Send** button. This command, like any other sent via XeosOnline, is shown in the Message Log of the device.

The currently used signals can be recovered by entering the response from **\$gnssGetSignalTracking** into XeosOnline's reverse hex calculator button on the bottom of the window. Clicking on **update** under the calculator will check the boxes of the signals that are currently tracked.

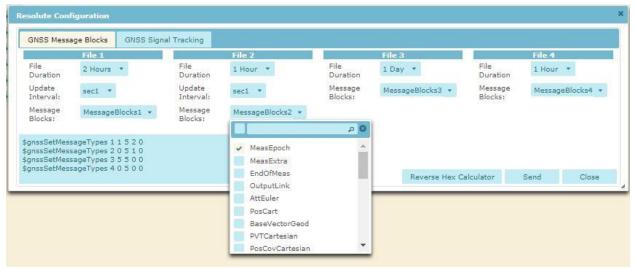
GNSS Message Types

Like the configuration of signals, the messages and intervals can also be configured under the **GNSS Message Blocks** tab in the Resolute Configuration window. Below is the command used for configuring the recording of messages:

\$gnssSetMessageTypes [stream] [duration] [update interval] [Bitmap A] [Bitmap B]

Stream is for file streams 1 through 4. The numerical value of the stream is contained within the <u>SBF file name</u> that is saved on the SD card, which can then be downloaded from the device over a tunnel connection.

File Duration and **Update Interval**, as shown in the Resolute Configuration window below, are indices corresponding to the values either provided in the calculator or entered manually in the window. The durations of the files for each stream can be set differently from one another. File streams 1 and 2 can be recorded at different update intervals, while streams 3 and 4 are locked as they are recorded only when the details of the block have changed, or a new file has opened


Bitmaps A and **B** are configurations used to choose message blocks of interest. Blocks can be chosen from the drop-down menu given under each file (as seen below) or by using the reverse

hex calculator. By selecting values in the calculator or drop-down menus, the message to send to the unit is formed. Note that different streams have different blocks that can be recorded.

Note: When using the calculator to send the commands, messages to configure all four streams are sent; verify the settings for each stream! Alternatively, the line for a single stream can be copied from the text box and sent with the usual Send Command tool.

Again like the configuring signals interface, the currently used blocks can be recovered by entering bitmap the response from **\$gnssgetMessageTypes** into XeosOnline's reverse hex calculator button on the bottom of the window. Clicking on **update** under the calculator will check the boxes of the signals that are currently tracked.

To present an example, **\$gnssSetMessageTypes 1 1 5 2 0** would record only **MeasExtra** message blocks in **File 1** for **2 hours** with an update interval of **1 second**. Conversion of the chosen *File Duration, Update Interval* and *Message Blocks* from the drop-down menus to their respective codes is done internally by XeosOnline.

Collecting RINEX Data

The Resolute does not naturally record in RINEX (Receiver Independent Exchange) format, but native SBF files can be converted to RINEX.

- To log the SBF equivalent of RINEX observation files, enable the **MeasEpoch** SBF message in GNSS stream 1 or 2.
- To log the equivalent of the Navigation RINEX files, log the **GPSNav** or **GloNav**, or respective Nav SBF block for the satellite constellations enabled in GNSS stream 3 or 4.
- To populate the RINEX header, enable the ReceiverSetup SBF block (more information can be found in the <u>SBF Reference Guide</u>). This block must be concatenated onto the observation file before converting with SBF converter. Xeos has tools to handle concatenation, and can auto-concatenate full days of data if downloading to Xeos' tunnel server.

RINEX conversion can be accomplished using either sbf2rin, or Septentrio's SBF Converter. The details of the RINEX header can be filled out with the following commands.

Command	Variables	Antenna Value for RINEX Heater
\$gnssSetAntennaType	See <u>Appendix B</u>	Reference point
\$gnssSetAntennaOffsets	To four decimal places [E-Offset] [N-Offset] [U-offset]	Antenna offset
\$gnssSetAntennaSerialnumber	20 characters	Serial number
\$gnssSetAntennaSetupId	20 characters	Setup ID
\$gnssSetMarkerName	20 characters	Marker name
\$gnssSetMarkerNumber	20 characters	Marker number
\$gnssSetMarkerType	20 characters	Marker type
\$gnssSetObserverName	20 characters	Observer name
\$gnssSetObserverAgency	20 characters	Observer agency
\$gnssSetObserverComment	20 characters	Observer comment

Configuring Base Station GNSS Correction Output

The Resolute can, for units enabled with Base Station GNSS Permissions, send RTCM corrections and data out of various modems and ports. The majority of base station users will use the Base station corrections over the built in Radio, the default correction output method. However, these corrections can also be output over the Serial 2 port, as well as streamed over a cellular tunnel connection to a port on XeosOnline (Beta Feature).

To configure the output of the RTCM corrections a bitmap parameter must be set:

\$rtcmSetOutputBitmap value

Value	Output Medium
1	Radio (Default)
2	Serial 2
3	Reserved
4	Cell Tunnel Streaming

Note: A unit restart is advised after updating the output bitmap.

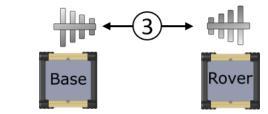
Radio Configuration

The radios as configured from the factory will work for a single Base, multiple Rover RTK network. If a NorthStar Repeater was included in your order, the Rovers will be configured to receive from a single NorthStar. Multiple NorthStar Repeaters in series will require reconfiguration of the Rovers.

To configure the radio channel on a Resolute use the command:

\$RadioSetChannelid [identifier] [channel]

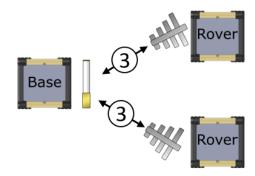
The identifier for a Resolute is always "A" and is not case sensitive. The 'channel' is a value between and inclusive of **0** and **7**.


To configure the radio to broadcast or receive on channel 7 the following command would be sent.

ŚRadioSetChannelid A 7

RTK Radio Network Design

The Resolute RTK units contain an embedded radio peripheral for sending and receiving RTK corrections. The radio peripheral included with RTK and NorthStar units operate on a channel basis, with 8 possible channels (0-7).


For a simple single-Base-single-Rover network, all radios should operate on the same channel to receive corrections. The default channel from the factory for this is channel 3. The Base broadcasts corrections to the Rover, and the Rover receives the corrections. For this configuration, the use of Yagi antennas is recommended.

An example of a Single-Base-Single-Rover network.

For a Single-Base-Multiple-Rover network, the Base needs to be equipped with an Omni antenna to allow strong radio signal in all directions. This is the only change required as the base broadcasts. All Rovers should be configured on the same channel as the Base.

An example of a Single-Base-Multiple-Rover configuration.

If the Base radio does not have line of sight to all Rovers required for your application, additional NorthStar Repeater(s) can be added into the Network. A NorthStar Repeater is equipped with two radios identified as Radio A and Radio B.

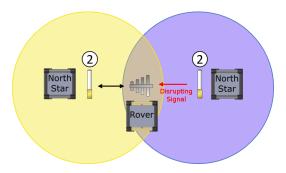
Radio A receives the corrections broadcasted from the Base. In this configuration, Radio A operates as a Rover and should be configured to the same channel as the Base, in this case the default channel 3.

Radio B rebroadcasts the corrections like a Base. Since Radio B is a second broadcasting radio on the same network it must be on a different channel to the Base it is receiving corrections from. The factory default for Radio B is channel 5. Any Rovers that require the NorthStar for line of sight to receive corrections should be on the same channel as the NorthStar Radio B.

In the configuration where a base is only broadcasting to a single NorthStar, the Base would need to be equipped with a Yagi antenna pointed at the NorthStar. NorthStar Radio A would be equipped with a Yagi Antenna pointed at the Base, while NorthStar Radio B would be equipped with an Omni Antenna to broadcast to multiple Rovers.

An example of a single NorthStar network (only one Rover shown).

It is possible to add multiple NorthStars in sequence for a long baseline connection to an RTK Rover. To add an additional NorthStar to the network mentioned above, Radio A would be configured to channel 5 to interface with the original NorthStar, while Radio B could be configured to channel 2 to interface with the Rovers. Rovers interfacing to the new NorthStar would be configured to channel 2.



An example of a chained NorthStar network.

For best performance, connect Rovers to the Base as directly as possible. Each NorthStar in series adds ½ second of delay in the corrections. Baseline length can also degrade the RTK results resulting in an additional +/- 1mm error per kilometer of baseline. Multiple-Base-Multiple-Rover setups are the best way to collect the most accurate results possible.

Bases cannot be configured on the same network; separate channels are required.

Bases or NorthStar Radio Bs cannot transmit on the same channel, when they are within communication distance of one another. **This means up to seven kilometers (4.3 miles) line of sight.** Rovers should be configured to receive from the Base closest to them, within line of sight. The maximum number of units linked to one Base or NorthStar is 28.

Avoid overlapping base coverage boundaries.

When setting up a large RTK network, draw a radio network map. Examples of such a map can be found in Appendix E.

Configuring the Cell Modem

If a cell modem is installed, it requires a micro-SIM from a local carrier to operate. Cell Tunnel and XBD tasks require a Data plan. SMS is currently only functional for North American phone numbers.

The cell modem also requires setting the APN (Access Point Name) specific to the plan procured from the local cell carrier. This can be set with

\$cellsetAPN APN

For example, data plans for the Canadian provider Bell would use the following:

\$cellsetAPN pda.bell.ca

The device must be reset after updating the APN. Make sure to enable/disable SMS or Data features on the Resolute, depending on the plan and application.

\$smsSetEnabled T

\$xbdSetEnabled T

\$tunnelSetEnabled T

The remainder of cell configuration is covered below in the <u>IP Tunnel Configuration</u> and <u>SBD, SMS</u> & <u>XBD Configuration</u> sections.

IP Tunnel Configuration

Note: The IP Tunnel task is incompatible with the Ethernet system; enabling the Tunnel while Ethernet is already enabled will disable Ethernet.

Data transfer is accomplished with the embedded telemetry (Cell Tunnel or Iridium RUDICS) over what will be referred to here as an **IP Tunnel**. The tunnel grants access to the embedded servers on the Resolute, and manages the connection to the XeosOnline server.

Tunnel timer settings (duration and interval) are used to moderate the connection amount. Setting appropriate values for each to acquire consistent data depends upon:

- The cost limitations for the user (Iridium RUDICS is billed by the minute, for example)
- The sustainable power draw
- The data amount being collected (size and quantity of files on the SD card)

Tunnel timers operate the same as all other tasks, with *enabled*, *duration*, *interval* and *offset*. Adjusting these values is discussed in the schedule section.

Most Resolutes may use the Iridium DOD/DISA gateway to operate both SBD and RUDICS service. However, this may not always be the case. If using the Iridium Commercial gateway, the user **must** configure into the Resolute the RUDICS dial number

(DNIS) of the installed (and activated) Iridium SIM's **RUDICS GROUP**. This is a separate value from an individual SIM's number (MSISDN). If the incorrect number is set, SBD will still function, but RUDICS will not.

The Resolute must also be explicitly set to use this number when making calls using the IP tunnel. The DOD number always remains the same and therefore never needs to be set.

\$irdSetDod F	T Enables Iridium DISA/DOD Gateway
	(default)
	F Disables DISA gateway to use Commercial
	Gateway
\$iridiumSetCommercialNumber 00898811112222	If DOD is set to False, set the Iridium RUDICS
	dial number (DNIS) of the installed SIM to
	allow RUDICS operation

The Resolute is configured to determine which modem should be prioritized for connections to the tunnel. The priority list can be changed with **\$TunnelSetModem**

\$TunnelSetModem priority modem

Priority is limited from 0 to 3, with 0 as the highest priority.

Modem values represent various telemetry options. Any slots in the priority list that are not used are simply shown as **Unconfigured.**

Modem Value	Modem
0	Reserved
1	Reserved
2	Cellular
3	Iridium

To prioritize the cellular modem **before** the Iridium modem the following commands would be entered:

\$TunnelSetModem 0 2 \$TunnelSetModem 1 3

Working Example:

A Resolute records data continuously and requires **one hour** of Tunnel time to transmit the collected data **daily**. The operators of this station need data to start downloading at **12 PM UTC**. Users will use Iridium on the Commerical Gateway for the tunnel interface. The following commands would be sent to the unit:

\$irdSetDod F \$iridiumSetCommercialNumber 00898811112222 \$TunnelSetEnabled T \$TunnelSetDuration 1h \$TunnelSetInterval 24h \$TunnelSetOffset 12h

Using IP Tunnel

The IP Tunnel (Iridium RUDICS or Cell) can open sockets to both the HTTP and Telnet servers on the device. Only one socket per server can be connected. Scripts that are used for downloading data use the HTTP socket and must be disabled by Xeos to allow other use of the HTTP socket.

Contact Xeos for more information about connecting to the embedded servers over the tunnel; the accessing IP must be cleared to access devices when working through XeosOnline.

Automatic File Retrieval (Auto-Downloader)

To retrieve files from the embedded HTTP server on a consistent basis, a script can be run to download all new files on the unit either through the Tunnel to the Xeos Server or over the local Ethernet connection to the device operating the script. **This is especially recommended for retrieving files over Iridium**.

The script will automatically start downloading files for the duration of the connection. This script acts as the one HTTP socket connection. Xeos must enable and disable the script at this time when operating over the Tunnel. Contact Xeos for further details.

SBD, SMS & XBD Configuration

If equipped with Iridium and/or cellular modems, it is possible to use **SBD** (Short Burst Data, Iridium), **XBD** (Xeos Burst Data, Cell) or **SMS** (Short Message Service, Cell) to receive periodic Status of Health (SOH) information, and/or send commands to configure the Resolute.

Commands sent to the Resolute via any of these telemetry options are not received by the Resolute until the scheduled task is run. In the case of Iridium, commands waiting in the queue are held by the Iridium Gateway for five days before being deleted. Cell telemetry can hold commands in their queues for significantly longer such as several months. Commands that are not prepended with the correct unlock code are ignored.

SBD, XBD and SMS can be configured individually using the *interval* and *offset* timer commands; **SBD and XBD durations are locked at 3 minutes.** The commands to configure the timers operate on the same principles outlined in the schedule section.

SBD, XBD and SMS-capable units will send a power-up message several minutes after the unit is powered or reset to confirm operation at deployment and to notify users of remote stations of unexpected power loss.

SBD, XBD and SMS cannot occur simultaneously to their respective tunnels; if scheduled to run during a tunnel session, a flag is set and the respective task will occur at the conclusion of the tunnel.

Ethernet Configuration

Specific IP and other settings of the Resolute's ethernet interface can be modified.

Note: The Resolute MUST be reset in order for any changes to Ethernet settings (including enabling) to take effect. Power cycling or the \$resetnow command can be used to achieve this.

Command	Description	Example
\$ethernetSetEnabled	Enables/disables the	\$ethernetSetEnabled y
	ethernet peripheral	
\$ethernetSetIP	Sets the ethernet IP	\$ethernetSetIP 192 1 168 2
	address	
\$ethernetSetNetMask	Sets the ethernet netmask	\$ethernetSetNetMask 255 255 255 0
\$ethernetSetMac	Sets the mac address	\$ethernetSetMac F1 3A 83 3C 6F BF
\$ethernetGetGateway*	Returns the gateway IP of	\$ethernetGetGateway
	the Resolute	
All values relating to ethernet IP and MAC settings are space delimited.		

All values relating to ethernet IP and MAC settings are **space delimited**.

^{*} The gateway address is set according to the IP address automatically and cannot be set manually.

Note: The Ethernet task is incompatible with the IP Tunnel Task; enabling the Ethernet while Tunnel is already enabled will disable the Tunnel.

Ethernet Latency Configuration

In situations where the Ethernet port of the Resolute is connected to high latency telemetry (BGAN, Some Ethernet Radios, etc), a higher data rate may be achieved by implementing

\$IPSetHighLatency T

This setting allows more packets to be sent without ACKs when transferring data.

Note: Enabling this setting on a low latency connection will result in slower performance.

Accessing the HTTP Server

Over Ethernet, the HTTP server can be accessed on port 80 by typing the IP of the Resolute into a connected computer using any standard web browser while the Resolute is on the network.

Operating the HTTP Client

Navigation can be done via the top menu. Wait for the pages to load fully (spinning wheel disappears) before loading another page or starting another operation.

Manual File Retrieval via Ethernet

Files from mounted cards can be downloaded after navigating to the appropriate SD card. Choose the files to download, one at a time, and wait for the downloads to finish before clicking on the next file. Downloads cannot be queued by clicking multiple files and will cause the tunnel disconnect. Do not cancel a partial download as this function is not built into the Resolute.

GNSS Configuration via Ethernet

Changing signals and GNSS message types can be done through this page in the same vein as the method used <u>via XeosOnline</u> using **GNSS CONFIGURATION > SIGNAL TRACKING** and **GNSS CONFIGURATION > MESSAGE TYPES**, respectively. Click on the check boxes corresponding to the blocks to record under the streams to record and click **Save** to send the new configuration to the unit.

Resolute Telnet Server via Ethernet

Over Ethernet, the Telnet server can be accessed on port 23 using the set IP on freely available programs such as PuTTy. The telnet server acts identically to the regular diagnostic port of the Resolute, accepting any command. Once connected, diagnostic output needs to be enabled to read responses to commands:

\$telnetSetDiagnostics T

To close the connection, close the telnet client. Otherwise, the connection will time out after 3 minutes.

Switch Power Configuration

The Resolute has two switched power pins to power external devices. Voltage output from these switches is (Input voltage -0.7V) with a maximum current draw of 1.8A per switch. These pins can be configured on either a non-scheduled basis, or via the scheduler. Both power switches are located on the $\frac{14-\text{pin connector}}{1}$:

Switch Number	Pin
1	Н
2	M

Scheduled Switched Power

To enable the switch power via the scheduler, send the command

\$Pwr#Setenabled [T/F]

With the appropriate switch number.

Once scheduled switching has been enabled, the usual settings associated with other scheduled tasks can be adjusted:

\$Pwr#Setduration [time] \$Pwr#Setinterval [time] \$Pwr#Setoffset [time]

To leave the switch always on, even after restarts, set the duration to 0:

\$Pwr#Setduration 0

One-Time Switching

To enable the switch on a one-time basis without scheduling, the command

\$pwrsetswitch [1/2] [T/F]

enables the switch until the switch is turned off, or the device's power is reset.

SDI-12 Master Interface

As of build 12923, the Resolute can act as the requester (Master) of data over the SDI-12 port for other sensors on a scheduled basis. Data acquired during this task is integrated into SBF files under the ASCII-In Data Block. This data format is compatible with SBFConverter for conversion back to ASCII. This task is locked to a duration of 60 seconds.

Since data blocks fall under the GNSS task, data is only saved to SBF blocks when the GNSS task is running.

There are several requirements to implement the collection of SDI-12 Sensor data:

• As always, the feature must be enabled

\$SDI12MasterSetEnabled T

- The ASCII-In Data Block must be enabled in the GNSS Message Types settings. This data block is only present in File/Streams 3 or 4. Configuration is easiest to implement when utilizing the interface on XeosOnline but can also be done through serial commands.
- The typical scheduling criteria as with other scheduled tasks are used to set up the task (ex. **\$\$DI12MasterSetInterval value**).

Additional criteria can be given to augment the operation of this task.

• The Resolute can be used to power the external device during the SDI-12 Master task via the one of the two available pins of the Switched Power Output.

\$SDI12SetPowerCon	tralEnabled value	•
SSIJITZSELPOWERCON	iroifnabled value	-

Value	Power Switch
0	None
1	1 (Pin H)
2	2 (Pin M)

• Some instruments will require time to boot before useful information can be requested. Setting a power-up delay in the Resolute will allow the switched power to run for a set time before the command string is sent. This value is in milliseconds.

\$SDI12SetPowerUpDelay value

• The SDI-12 task has a default command string (**0R0!**) that will make the request through addresses 1 – 9, recording the results that arrive. This can be overridden by first enabling the override, and inputting the string to be used in place of the default value.

SDI12SetExtSenCmdEnabled T \$SDI12SetExtSenCmdString string

ASCII External Sensor Interface

The Resolute is equipped via the Serial 2 port to acquire, on a scheduled basis, external sensor data. Data acquired during this task is integrated into SBF files under the ASCII-In Data Block. This data format is compatible with SBFConverter for conversion back to ASCII.

Since data blocks fall under the GNSS task, data is only saved to SBF blocks when the GNSS task is running.

There are several requirements to implement the collection of ASCII External Sensor (AES) data:

As always, the feature must be enabled

\$AESSetEnabled T

- The ASCII-In Data Block must be enabled in the GNSS Message Types settings. This data block is only present in File/Streams 3 or 4. Configuration is easiest to implement when utilizing the interface on XeosOnline but can also be done through serial commands.
- The <u>Serial 2 port</u> must be enabled, along with the correct port settings to match the external device connected.
- The AES task must be configured with the correct outgoing command from the Resolute to the external device such that an appropriate response will be received.

\$AESSetCommandString string

• The typical scheduling criteria as with other scheduled tasks are used to set up the task (ex. \$AESSetInterval value)

Additional criteria can be given to augment the operation of this task.

• The Resolute can be used to power the external device during the AES task via the one of the two available pins of the Switched Power Output.

Value	Power Switch
0	None
1	1 (Pin H)
2	2 (Pin M)

• Some instruments will require time to boot before useful information can be requested. Setting a power-up delay in the Resolute will allow the switched power to run for a set time before the command string is sent. This value is in milliseconds.

\$AESSetPowerUpDelay value

Serial 2 Data Relay

The Resolute can act as a serial data relay, by which external devices can transmit and receive data via Iridium SBD or Cell XBD.

This feature is not scheduled; data that is transmitted to the Resolute from an external device is received immediately. The diagnostic port prints the amount of data in bytes that it has received. Data received is then transmitted.

Receiving data through the Resolute is tied to the telemetered task (Iridium SBD or Cell XBD). Once received, data is passed to the external device according to the port settings.

The data contained in the payload is not saved to the SD cards.

There are several requirements to implement the use of the Serial 2 Port:

• As always, the feature must be enabled

\$serial2SetEnabled T

The correct port settings to match the external device connected.

\$Serial2SetBaud value

• The Serial 2 port by default utilizes RS-232; RS-485 can also be utilized.

\$Serial2SetPortMode value

The CTS/RTS Flow control can be enabled if necessary for the external device.

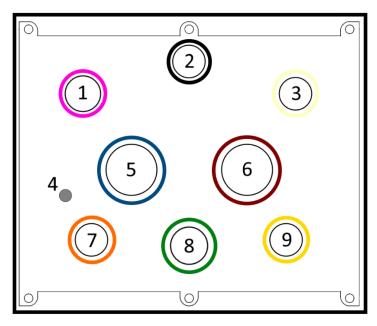
\$serial2SetFlow T

• In addition, Full or Half-Duplex can be specified for RS-485.

\$serial2SetCommsMode value

Data transmitted through the Serial 2 Port to the Resolute must be pre-pended with a **start byte** (0xFC) and a two-byte **size** value in **little endian**. This value specifies the size of the **payload**, not including the header itself.

For a message with a payload of 1750 bytes (size 0x06 D6), the format would be as follows:


- If the size value is **less** than the actual payload sent, the transmitted message will be truncated.
- If the size value is **greater** than the payload sent, the Resolute will wait until **all bytes expected are received**.

Sending Data Relay information to a Resolute can be done on XeosOnline via the **Menu > Send Data Relay** option. XeosOnline adds the header information automatically. Size limits for modems will prevent large data payloads from being sent.

Device Preparation

Physical Interfaces

When a Resolute is ordered, each cable ordered alongside it will come with a colored indicator, where possible, on each end to assist in cable hookup.

No.	Name	Function(s)
1	USB-Mini	Provides access for configuration of device for deployment via PC.
		Note: USB COM Port does not mount when Resolute is unpowered
		or reset.
2	Test Button	Used as a check on the currently running tasks, turning appropriate
		LEDs on. Hold the button to reset the device.
3	Radio TNC	Connection to 900 MHz Radio antenna
4	2 BA Ground Stud	Grounding connection for lightning and surge protection
5	Serial/SDI-12/SW	RS-232 Diagnostic output (Serial 1)
	LOAD	Connection to peripheral device via Serial 2 or SDI-12
	(14-Pin Female)	Switched power for peripheral device
6	Power/ENET/CBUS	Power Input
	(10-Pin Female)	Ethernet Interface
		CBUS
7	Iridium TNC	Connection to Iridium antenna
8	GNSS Type N	Connection to GNSS antenna
9	Cellular TNC	Connection to Cellular antenna

The front panel of the Resolute has up to seven connectors, depending on the installed telemetry, to connect to various antennas.

Pinouts for the main connectors are at the bottom of this document.

Installing Power

The power leads on the 10-Pin connector (A and B) are connected to the red (+) and black (-) flying leads on the supplied cable, respectively.

The Resolute requires a DC power supply of 11V (minimum) to 28V (maximum), with a supply capable of sourcing 3A surge currents at 12V if equipped with Cellular or Iridium telemetry. This can be reduced to one amp if no Iridium or Cellular modem is present. Appendix G outlines average power consumption requirements for various configurations of the Resolute.

The majority of Resolutes in the field will be powered by battery and solar panel. It is recommended to utilize a charge controller for a battery equipped with a low voltage disconnect to increase the lifespan of the station battery.

It is also important to ground the Resolute for lightning and surge protection. The ground stud is located to the left of the serial connector and is pictured below. The thread of the grounding stud is **2 BA**

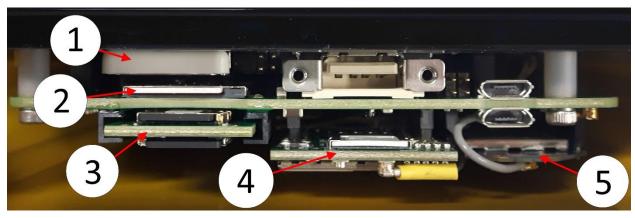
2 BA Threaded Ground Stud

Removable Door: SD Card Access and SIM Installation

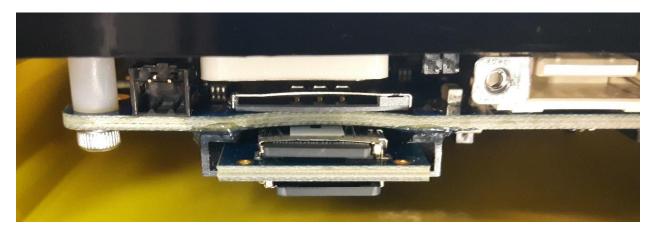
The Resolute has a removable door on its right (labelled) that allows access to the SD cards (shipped with the Resolute) and SIM slots for optional Cell and/or Iridium Telemetry.

To prevent corruption of SD card data due to removal, the Resolute will unmount the SD cards when the removal of the door is detected. LEDs will illuminate on the Resolute as though the **TEST** button were pressed when the door is opened.

Ensure the SD Card LED is RED to confirm the memory cards have been unmounted before removal. No data will be written while the door is removed, but tasks will still run on their schedules.


To resume recording after accessing the SD cards, return the cartridge with the cards to its holder and close the door.

Check that the SD LED is GREEN (or YELLOW if using a single SD Card) to ensure both cards were mounted properly. Screw in the fasteners to ensure the door is retained by the enclosure.



A 3/32 inch hex driver can be used to open the door. Four captive screws will remain attached to the door itself.

The image below shows the various components of the Resolute that can be viewed when the door is open. Not all components may be present based on loadout.

No.	Name	Function
1	Clock Battery	Used to maintain the internal clock of the Resolute
2	Iridium SIM Holder	SIM Card mandatory for use with Iridium is inserted here
3	SD Card Holder	PCB holding both the MicroSD cards is stored here
4	Cell Micro SIM	Module for holding a cellular Micro SIM card is installed here
5	Radio	Radio module is mounted at this point (if applicable)

Retrieving SD Cards

The SD cartridge fully mounted on the PCB chassis.

The two SD cards are of the microSD form factor and are mounted on either side a single removable cartridge. The SD cartridge can be removed by hand by pulling in the direction of the opening of the enclosure. The SD cartridge itself is symmetrical and labelled so as to not swap card placement.

• SD 1 facing **UP** records GNSS SBF data.

 SD 2 facing **DOWN** serves as a backup to overflow to when turning off memory management.

SD 2 Mounted on Left, Push Ejected on Right

The SD holders are push-type. Pushing the SD card further into the holder until a click is heard will allow removal of the card. Push again until a click is heard to mount.

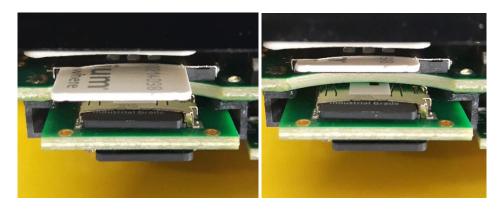
If the SD cards are placed in the incorrect SD holders or the holder itself is inserted upside down, the data will become mixed (diagnostic and GNSS data on the same card). This has no effect on the performance of the unit but may cause GNSS data to be removed from the card sooner than desired; read about the memory management later in this section for more information.

It is recommended to only use SLC industrial rated microSD cards. For firmware builds equal to or greater than 4641, any capacity microSD is compatible. If using an earlier firmware version, there is a storage capacity requirement of 4GB.

Installing the Iridium SIM

If the Resolute comes equipped with an Iridium modem, it requires an Iridium SIM to operate. Iridium SIMs can be purchased through Xeos, an Iridium Value Added Reseller.

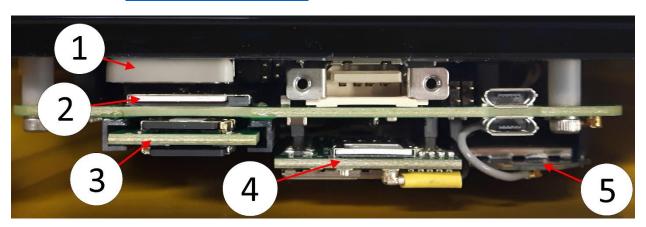
If only using SBD, a register-only SIM is required. Register-only is an Iridium SIM plan which does not require a paid SIM subscription, but allows a modem to register with the network.


If using RUDICS, the SIM will need to be activated on a paid Iridium Telephony plan.

Before inserting or removing the Iridium SIM, verify no power applied to the unit. To access the Iridium SIM slot, open the SD card door of the Resolute. The Iridium SIM slot is immediately above the SD Cards.

The contact plates of the SIM card must face the SD cards. Insert the SIM by pushing the SIM in place until a click is heard. A fully installed SIM is flush with the SIM holder.

Tip: It may be easier to insert or remove the SIM if the SD cartridge is removed first.


Iridium SIM Ejected (Correct Orientation) on Left, Seated on Right

Installing the Cell micro-SIM

If the Resolute is equipped with a cell modem, it requires a cellular micro-SIM to operate. Cell SIMs can be purchased from a local cellular carrier.

The default modem standard of the Resolute is GSM. If a CDMA carrier is to be utilized, this must be specified at time of purchase.

The Resolute also requires an **APN** (Access Point Name) to be configured to connect to the SIM's network. See the <u>Configuring the Cell Modem</u> Section for more information.

Cell SIM Inserted on Cell modem (4)

Test Button

The TEST button can run different tasks based on variable length button presses. Additional confirmation feedback to these button presses is provided by the response of the LEDs.

Press Length	Unit Response	LED indication
~1s - 3s	LEDs On	All Active Task LEDs ON
3s - 10s	Software Reset	All Flashing YELLOW
10s - 20s	RTK Base – Base Position Reset & Software Reset	GNSS Flashing BLUE
	Other Models - Software Reset	
20s +	Cancel Above Responses	LEDs turn OFF

To turn on the lights, press the test button (roughly one second press). This will light up the LEDs for 15 minutes. LEDs can be used to confirm the unit's systems are working.

Only the LEDs that represent in-progress tasks will illuminate and change color as tasks start, complete and shut down.

LED Behavior

LEDs on the Resolute are designed to assist in confirming correct operation. LEDs are automatically on after power up for 15 minutes to assist with installation. LEDs can be reactivated with a push of the TEST button.

A software reset, or power-on of a Resolute, prompts all LEDs to flash **GREEN** for several seconds.

If a task LED is not on, that particular task is not scheduled to run at this time and may not be configured to run at any time. The **\$schedule** command over a local connection can be used to ensure the expected task is enabled, and when it is scheduled to run.

Power LED				
Behaviour	Meaning			
Red	Reverse voltage applied			
Green	Unit is powered			
No LED	Unit is not powered			
SD LED				
Behaviour	Meaning			
Red	SD Cards unmounted. Safe to remove			
Solid Yellow	One SD card mounted. Not safe to remove			
Flashing Yellow	One SD card mounted, Resolute is writing to card. Not safe to remove			
Solid Green	Two SD cards mounted. Not safe to remove			
Flashing Green	Two SD cards mounted, Resolute is writing to card(s). Not safe to remove			
GNSS LED				
Behaviour	Meaning			
Red	GNSS receiver on, no valid positions received in last 30s, < 4 SV tracked			
Yellow	Last position received is valid (non RTK), Tracking at least 4 satellites			
Blue	Last position received RTK Float			
Green	Last position received RTK Fixed			
Iridium LED				
Behaviour	Meaning			
Red	An Iridium Modem task (SBD, Tunnel) is on			
Solid Green	RUDICS Tunnel confirmed connected to XeosOnline			
Flashing Green	SBD successfully sent to gateway			
Cellular LED				
Behaviour	Meaning			
Red	A Cellular Modem task (SMS, XBD, Tunnel) is on			
Green	Cell is registered to Network			
Radio LED				
Behaviour	Meaning			
Red	A Radio task is on			
ileu				
Yellow	Sending correction (RTK Base), receiving correction (RTK Rover)			
	Sending correction (RTK Base), receiving correction (RTK Rover) A Rover is registered (RTK Base), registered to Base (RTK Rover)			
Yellow Green				
Yellow Green Ethernet LED	A Rover is registered (RTK Base), registered to Base (RTK Rover)			
Yellow Green Ethernet LED Behaviour	A Rover is registered (RTK Base), registered to Base (RTK Rover) Meaning			
Yellow Green Ethernet LED	A Rover is registered (RTK Base), registered to Base (RTK Rover)			

Installing a Resolute

When installing a Resolute it is important to choose the installation site thoughtfully. It should be noted that there are differences when installing Rovers, Bases, and Reference receivers which will be highlighted in the following sub sections.

RTK Radio Network Design

Before leaving the office, if the unit includes a radio for broadcasting or receiving corrections, best practice is to determine the radio network for this device.

- Consider any already installed units to include or exclude in this network. See the example radio network drawings in the <u>Appendix E</u> in addition to the <u>RTK Radio Network Design</u> section for more information.
- It is easiest to configure the radios in the office before leaving, but configuration is possible to do in the field.
- Record the radio channel numbers of various units for future reference.
- The below installation order allows the installer to confirm corrections are being received at the Rovers before concluding install.
 - Base
 - NorthStars (if utilized)
 - Rovers

Installing the GNSS Antenna

The GNSS Antenna is the measuring point of the Resolute. Installing in the proper location will ensure increased performance.

The majority of GNSS satellites do not pass directly overhead, but travel closely to the horizon. Due to this, a GNSS antenna should ideally be installed with a 180 degree uninterrupted view of the sky. In less ideal locations, maximizing the volume of the sky in view is still paramount. Metallic objects and other reflective surfaces should not be in the immediate vicinity, and above buildings where possible.

An Iridium antenna can cause interference with the GNSS receiver so should be placed a minimum of 1 meter away from the GNSS antenna; 10 meters of distance is ideal.

For RTK Rovers and Reference stations, GNSS antenna should be mounted to the desired landmark to be measured. The antenna should be attached in such a way that if the landmark moves, the antenna will be moved by the same amount.

Keep in mind of the thermal expansion when mounting the antenna to the landmark, especially for fine deformation monitoring.

If an RTK Base is being installed, the antenna should be monumented to a piece of land that is not moving, bedrock for example would be a preferable medium. Any movement of the Base antenna will present itself as movement of the Rovers in the data.

GNSS Antenna Mount, Xeos PN A-03-058

See <u>Appendix C</u> for specific GNSS antenna mount installation instructions if you purchased an antenna and mount from Xeos.

Installing the Radio Antenna

If the unit is equipped and configured to send information over radio, installing a radio antenna is necessary. The radio antennas come in two flavors, Yagi and Omni antennas.

Yagi antennas are directional antennas and are best used when communicating with only one other radio.

Omni antennas are omni-directional antennas and are best used when a radio must communicate with multiple devices.

Both Yagi and Omni radio antennas work on a **line-of-sight** basis, with a range up to seven kilometers (4.3 miles) in ideal conditions. Mounting a radio antenna higher in general will allow the radio antenna to transmit over more obstacles. If line of sight is not possible between radios, NorthStars are perfect for relaying corrections over or around obstacles and are not themselves inhibited by the GNSS antenna mounting requirements.

Rovers equipped with radios only need Yagi antennas. Install the Yagi on a pole, or other high point in a horizontal orientation, and point the Yagi to the nearest source of corrections. Poles are advantageous for mounting as they allow 360 degrees of orientation. The smallest element of the antenna is the **front** of the antenna when orientating. The antenna comes equipped with mounting hardware.

Bases can be equipped with Yagi or Omni antennas depending if they are broadcasting to a single endpoint, or multiple end points. If installing a Yagi, point the Yagi to the desired endpoint for the corrections. If installing an Omni, mount in a vertical orientation, on a mast or other high point. The antenna comes equipped with mounting hardware.

Installing the Cell Antenna

If using a unit equipped with a cellular modem, install the cellular whip antenna in a vertical orientation. While a cell antenna does not have the additional stringent requirements of the other antennas, a cell antenna should not be contained in a metal box.

Installing the Iridium Antenna

If using a unit equipped with an Iridium modem, the Iridium antenna is **required**. This antenna should be installed with as clear a view of the entire sky as possible, like a GNSS antenna.

Iridium satellites travel closer to the horizon than overhead. The larger the continuous volume of the sky the antenna can see, the better.

The Iridium antenna can cause interference with the GNSS receiver so should be placed a minimum of 1 meter away from the GNSS antenna; 10 meters of distance is ideal.

Installing RF Cables

Connecting the RF cables to the antennas involves transitioning the cables through a weather protective enclosure for the Resolute and the power system. This can be done, depending on the environment, through a downspout on the enclosure, or through polyphasers in the wall of the enclosure (not supplied).

If using polyphasers, the polyphaser in line with the GNSS antenna must allow +15V DC Passthrough, as the GNSS antenna is active. RF cables supplied by Xeos are marked with a part number and color code. The color code matches the ring around the connector on the panel to allow for easy tracing of cables. For an example assembly diagram of RF cable configurations see Appendix D.

Setting the Base Position (Base Stations Only)

Setting the Base position tells the unit that the Base is configured in its final location. **This MUST** be done for all RTK Base units and should be done after installing the GNSS antenna at the base site and powering the unit.

To automatically find the Base, press and hold the **TEST** button for 10 seconds until the GNSS LED starts to flashes **BLUE**. Release the button and the unit will reset along with wiping the previously stored base position.

The GNSS modem's first task will be to calculate a new Base position that will be stored. This position will survive power resets. Automatically setting the Base position will allow the RTK Rovers attached to the Base to make relative measurements, derived from this position.

Confirming Device Operation

A summary of these behaviours with their LED colors is <u>here</u>.

Power to the Resolute

After plugging in the power connector, the unit will flash all of its LEDs green, with the Power LED remaining green. If red, reverse the voltage supplied to the unit.

SD Cards Mounted

Shortly after start up the processor will attempt to mount the SD cards, at which time the LED will change from Red to Green, or to Yellow if only one card is installed. If the LED is red or unexpectedly yellow, check that the cartridge and SDs are correctly mounted, or check that the door is closed with its magnet still installed.

GNSS Receiver Operation

Shortly after start-up, the GNSS receiver will power on and restore its configured settings. The GNSS LED will initially be red after configuring the GNSS receiver. The receiver will begin tracking satellites when the first valid position fix comes in (i.e. tracking 4 satellite or more) and the LED will turn yellow.

RTK Radio Operation (Base)

Shortly after start-up, the GNSS modem will power on and configure. The GNSS LED will initially be red. If it does not have a Base position stored, the GNSS receiver will use the first valid position it receives as the base position.

If this is the first time the unit has been at this location, resetting the Base is advised to ensure the Base position is correct. **Do not rely on the unit not having a Base position.**

After getting a Base position the GNSS will reset and start up. When the GNSS receiver gets valid positions to generate corrections the GNSS LED will go change to yellow. The Base GNSS LED stays yellow during normal operation.

After the GNSS LED turns yellow, the Radio LED will change to yellow to indicate the corrections are being sent over the radio. If a Rover is active in the field and configured correctly, the radio LED will turn green.

RTK Radio Operation (Rover)

Shortly after start-up, the radio will power on red, taking ~90 seconds to configure. Once configured, if the antenna is correctly pointed to a corrections source, the radio LED will turn yellow.

60 to 90 seconds after the radio LED changes to yellow, the radio confirms registration with the Base, at which point the radio LED be green, confirming two-way communication with the Base or NorthStar.

60 to 90 seconds after start-up the GNSS receiver will power on and configure. The GNSS LED will initially be red after configuring the GNSS receiver. The receiver will begin tracking satellites when the first valid position fix comes in (i.e. tracking 4 satellite or more) and the LED will turn yellow.

If the radio is receiving good quality corrections and the receiver has received the ephemeris (<5 minutes), the radio will attempt to fix ambiguities and enter float RTK mode. If the receiver enters float RTK mode, the GNSS LED will turn blue. Following this, if the GNSS antenna is well placed the ambiguities will usually fix in under 5 minutes. This results in the GNSS going green and optimal performance.

Cell Operation

If equipped with a Cell modem, there are multiple configuration options; start-up behavior will send an XBD or SMS, depending on which is configured.

After successfully sending an XBD/SMS, the Cell LED will flash green for 10 seconds to indicate the message has been sent.

To test the cell tunnel, wait for the tunnel to start or change the tunnel schedule to a time closer to the present. The Resolute will attempt to connect to XeosOnline. If the connection is successful, the Cell LED will be solid green.

Note: Testing SMS only confirms the SMS portion of the connection. The data portion of the connection, if being used should be tested either with XBD or the tunnel.

Iridium Operation

If the Resolute is equipped with Iridium, it will send an SBD message shortly after start-up. After successfully sending this SBD, the Iridium LED will flash green for 10 seconds, indicating the message been successfully sent.

To confirm RUDICS Tunnel operation, schedule the tunnel to start at the time desired. The modem will dial up a RUDICS connection at this time. If the unit is able to connect to XeosOnline via RUDICS, the Iridium LED will be solid green. Any time the Iridium modem is powered on but has not yet successfully connected the tunnel or sent an SBD the Iridium LED will be Red.

XeosOnline

XeosOnline can be used to view the state of the units' Tunnel Connection, Status of Health and for easily sending and receiving SBD/XBD messages. A comprehensive breakdown of its features can be found in its manual.

Sending XBDs and SBDs Using XeosOnline

Each unit has a default method of sending messages. When both Iridium and Cell modems are present, Iridium is the default. Contact support to change this setting.

Not all commands are responded to over the air by the Resolute, such as **\$schedule**. Commands that set values are responded to. Any command that responds in a multiline list will not reply. Outgoing commands can be viewed in the **Messages** tab on XeosOnline.

Remember to adhere to two rules for commands:

- Include the \$ ahead of each command.
- Enter each command on a separate line.

The **Send Command** dialog is the interface used to send messages to any number of devices within an organization.

- 1. Users can send Iridium SBD (Short Burst Data) or Cell XBD (Xeos Burst Data) messages to any device within the scope of their organization by going to **Menu** → **Send Command**
- 2. The **Send Commands** dialog will appear
- 3. Click the device(s) to receive the command(s) and click -> or drag all devices from the left column into the right column.
 - Click -> to add all devices
 - Devices can be moved back to the left column with opposite action buttons or dragging.

4. Commands can be typed into the **Commands** box.

Note: The Resolute requires an **Unlock Code** before each group of commands. XeosOnline saves this unique code for each device if it has been received by the site previously, and adds it ahead of any outgoing commands.

If the outgoing command is prefixed with **\$Unlock 0** in the message log, XeosOnline does not have this device's unlock code. The intended command **will be ignored by the device**; the device will instead reply with the correct code on the next Iridium/XBD check, provided XeosOnline is set to receive the device's messages.

- 5. Target Lists and/or Commands can be saved as templates for later use. Saved templates can be loaded from the **Saved templates** list.
- 6. Once the Target List and Commands are ready, click **Send**.
 - Outgoing messages are logged in the Message Log tab.
 - Sending a command will give a notification of success or failure. If an Iridium device is not active on the network, or if the message being sent is too long, the dialog box will indicate as such.
 - The target devices will process the command during their next Iridium/XBD task.
 - In the case of Iridium, commands waiting in the queue are held by the Iridium Gateway for five days before being deleted. Cell telemetry can hold commands in their queues for significantly longer such as several months. Commands that are not prepended with the correct unlock code are ignored.

Resolute Messages on XeosOnline

Excluding responses to commands, the Resolute transmits periodic messaging to display information regarding its own disposition. These messages will indicate which communication service was used to send them (SBD, XBD, or Tunnel).

Power-up

Several minutes after powering or reset, the Resolute will transmit a single message to indicate this event has occurred. This message has information that does not get transmitted with each additional message, such as the unlock code, IMEI and Iridium SIM number (ICCID).

Powerup: true, Timestamp: 2025-08-07T14:05:51.000Z, Serial: 546, Firmware Version: 4.1 - 12923, BatteryV: 13.7, Device Temperature (°C): 29, Ird Temp: 29, GNSS Temp: 31, Reset Reason(s): Software Reset, Pin, IMEI: 300125062020370, Sim Card #: 8988169234000214635, Unlock Code: 46776, Cell IMEI: 320187822024183

Status of Health

Each SBD, XBD or Tunnel task will output status of health (SOH) messages. While the periodic SBD or XBD tasks will transmit a single SOH per task, the tunnel connection will output an SOH every 15 seconds.

As of build 9299, position and altitude are also sent in SOH messages, provided one of these values has been updated since last transmission.

Data Source: IP Tunnel, Message Type: Resolute SOH, Timestamp: 2025-08-05T11:17:59.537Z, VersionMajor: 1, VersionMinor: 1, Firmware Build Number: 12923, Time: 2025-08-05T11:17:59.000Z, Device Temperature (°C): 33, Ird Temp: 33, GNSS Temp: 34, Supply Voltage: 12.36, VDD: 3.32, VMODEM: 3.94, V5V: .02, Disk 1: 0, Disk 2: -1, SVs: 12, IMEI: 300125062020370, Latitude: 44.714443272, Longitude: -63.604985831, Altitude: 24.1063, Disk 1 Percent Acc: 0.12069197, Disk 2 Percent Acc: -1.0

Values presented in order are displayed below.

Data Source What telemetry generated the message (SBD, XBD or Tunnel) Message Type Status of Health Timestamp XeosOnline's time record of receiving this message VersionMajor Major version of firmware VersionMinor Minor version of firmware Firmware Build Number Specific build number of firmware Time Time the Resolute generated this message Device Temperature Internal board temperature (°C) Ird Temp Temperature of the Iridium modem (°C) GNSS Temp Temperature of the GNSS modem (°C) Supply Voltage Voltage input (V) VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1 Disk 2 Percent Acc* Fine reading of consumed percentage of SD Card 2	values presented in order are displayed below.				
Timestamp XeosOnline's time record of receiving this message VersionMajor Major version of firmware VersionMinor Minor version of firmware Firmware Build Number Specific build number of firmware Time Time the Resolute generated this message Device Temperature Internal board temperature (°C) Ird Temp Temperature of the Iridium modem (°C) GNSS Temp Temperature of the GNSS modem (°C) Supply Voltage Voltage input (V) VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Data Source	What telemetry generated the message (SBD, XBD or Tunnel)			
VersionMajor Major version of firmware VersionMinor Minor version of firmware Firmware Build Number Specific build number of firmware Time Time the Resolute generated this message Device Temperature Internal board temperature (°C) Ird Temp Temperature of the Iridium modem (°C) GNSS Temp Temperature of the GNSS modem (°C) Supply Voltage Voltage input (V) VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Message Type	Status of Health			
VersionMinor Minor version of firmware Firmware Build Number Specific build number of firmware Time Time the Resolute generated this message Device Temperature Internal board temperature (°C) Ird Temp Temperature of the Iridium modem (°C) GNSS Temp Temperature of the GNSS modem (°C) Supply Voltage Voltage input (V) VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Fine reading of consumed percentage of SD Card 1	Timestamp	XeosOnline's time record of receiving this message			
Firmware Build Number Time Time the Resolute generated this message Device Temperature Internal board temperature (°C) Ird Temp Temperature of the Iridium modem (°C) GNSS Temp Temperature of the GNSS modem (°C) Supply Voltage Voltage input (V) VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	VersionMajor	Major version of firmware			
Time Time the Resolute generated this message Device Temperature Internal board temperature (°C) Ird Temp Temperature of the Iridium modem (°C) GNSS Temp Temperature of the GNSS modem (°C) Supply Voltage Voltage input (V) VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	VersionMinor	Minor version of firmware			
Device Temperature Internal board temperature (°C) Ird Temp Temperature of the Iridium modem (°C) GNSS Temp Temperature of the GNSS modem (°C) Supply Voltage Voltage input (V) VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Firmware Build Number	Specific build number of firmware			
Ird Temp Temperature of the Iridium modem (°C) GNSS Temp Temperature of the GNSS modem (°C) Supply Voltage Voltage input (V) VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVS GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Time	Time the Resolute generated this message			
GNSS Temp Supply Voltage Voltage input (V) VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Lidentifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Device Temperature	Internal board temperature (°C)			
Supply Voltage Voltage input (V) VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Ird Temp	Temperature of the Iridium modem (°C)			
VDD Voltage of the VDD controller rail VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	GNSS Temp	Temperature of the GNSS modem (°C)			
VMODEM Voltage of the modem rail V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Supply Voltage	Voltage input (V)			
V5V Voltage of the 5V rail Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	VDD	Voltage of the VDD controller rail			
Disk 1* Coarse reading of consumed percentage of SD Card 1 Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	VMODEM	Voltage of the modem rail			
Disk 2* Coarse reading of consumed percentage of SD Card 2 SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	V5V	Voltage of the 5V rail			
SVs GNSS Satellites in View IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Disk 1*	Coarse reading of consumed percentage of SD Card 1			
IMEI Identifier of the currently used modem's IMEI (Iridium or Cell) Latitude Location of the Resolute in decimal degrees Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Disk 2*	Coarse reading of consumed percentage of SD Card 2			
Latitude Location of the Resolute in decimal degrees Longitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	SVs	GNSS Satellites in View			
Longitude Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	IMEI	Identifier of the currently used modem's IMEI (Iridium or Cell)			
Altitude Altitude of GNSS reading in meters Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Latitude	Location of the Resolute in decimal degrees			
Disk 1 Percent Acc* Fine reading of consumed percentage of SD Card 1	Longitude				
	Altitude	Altitude of GNSS reading in meters			
Disk 2 Percent Acc* Fine reading of consumed percentage of SD Card 2	Disk 1 Percent Acc*	Fine reading of consumed percentage of SD Card 1			
	Disk 2 Percent Acc*	Fine reading of consumed percentage of SD Card 2			

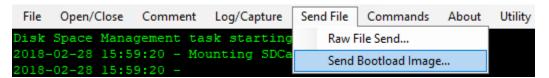
^{*} If an SD card value is -1, that card is not mounted to the Resolute; either it is not installed, the door is reading as open, or the voltage is low.

Upgrading Firmware

Firmware for the Resolute can be acquired as a package from the Xeos Respository.

Connect to the Resolute with a USB or Serial cable and start STerm. Open a connection at 115200 baud.

Disable the GNSS functionality and the 900 MHz radio, if installed.


Send the following commands to turn off GNSS and Radio respectively:

```
$gnssSetEnabled F
```


\$radioSetEnabled F

```
2018-02-28 16:08:14 - GNSS On Interval Enabled: FALSE
2018-02-28 16:08:29 - Radio On Interval Enabled: FALSE
```

On the top menu bar, navigate to **Send File** and click on **Send Bootload Image**.

The **Firmware Image Send** window will open and you will need to select the new version of firmware by clicking the ... and opening the .bin file. Once the **Sent** number matches the **Size** number, the upload is complete.

Reset the unit by sending the following command and wait for the unit to restart.

\$resetnow

```
2018-02-28 16:19:02 - RESETTING - COMMANDED
2018-02-28 16:19:03 - Un-Mounting SDCard 1
2018-02-28 16:19:03 - Un-Mounting SDCard 2
```


Check the firmware version to confirm the installation was successful by entering the version command and comparing it to the number on the .bin file that was uploaded:

\$ver

2018-02-28 16:20:34 - Ver: 1.1.4275 Boot: 1.1.4097

If the new version wasn't properly uploaded, resend the image.

To view all the firmware images on the Resolute, use the \$imglst 1 command.

2018-02-28	16:21:44	Sctr	Errs	DateTime	Size	Type	Version	Pri/Count
2018-02-28	16:21:44	2	0	1519833755	320512	x 3000	1.01.04262	2 1/011
2018-02-28	16:21:44	81	0	1519834264	321792	x 3000	1.01.04275	1/015

Delete the old firmware using **\$imgdelete** command. In this example, firmware version 4275 was uploaded so 4262 must be the old firmware. Enter **\$imgdelete** followed by the version number omitting the zeroes and replacing periods with a space:

\$imgdelete 1 1 4262

Do not delete the current version of firmware.

Re-enable the GNSS functionality:

\$gnssSetEnabled T

If a 900 MHz radio is installed (Resolute-PIN) re-enable the radio as well.

\$radioSetEnabled T

Note: Units without 900 MHz radios installed can experience issues if the functionality is enabled. Do not enable the radio functionality if the hardware is not equipped.

If the Resolute is equipped with a cellular or Iridium tunnel, it is likely possible to update the firmware remotely. Contact Xeos for details.

Appendix A: Command Index

The below is not an exhaustive list of the entire command set installed in the Resolute; presented are the settings and commands most likely to be utilized.

Commands and arguments are **not** case-sensitive and are only given different cases for easier readability in this document. However, values being passed to other external peripherals (such as to an ASCII external sensor) could be, and should be noted when utilized.

Arguments below as <#> indicates a valid range of values.

Arguments below in [ARG] indicates separate, required arguments after the command.

Enable/disable commands use a TRUE/FALSE setup arguments in the form of T or F.

Time-based commands use a numerical value followed by an appropriate time measurement, but the Resolute will always return the value in **seconds**.

S	Seconds
m	Minutes
h	Hours
d	Days

For the most part, only **SET** commands are listed below. Note that any **SET** command has an equivalent **GET** version, that can be used, without arguments, to acquire the current state of a setting. Any **GET** commands that deviate from this scheme (ex. **\$tunnelsetmodem vs \$tunnelgetmodems**) are also listed.

Command	Arguments	Description	Example
Generic			
\$resetNow		Soft reset the Resolute	\$resetNow
\$factoryDefaults		Set the device back to its default settings. Does not reset the device. Enabled Tasks and Schedules are not changed.	\$factoryDefaults
\$schedule		Returns schedule of all enabled peripherals,	\$schedule

		OR displays that no tasks are enabled if applicable over local connection on current version.	
\$ver		Returns the firmware version loaded	\$ver
\$getSerialNumber		Returns the device serial number	\$getSerialNumber
\$unlock	 or [CODE] [NEW CODE<10000 – 99999>]	Returns the current unlock code for Iridium or Cell commands, or change the code to a new code.	\$unlock Or \$unlock 12345 62652
GNSS			
\$gnssSet5vAnt	T/F	T Set antenna voltage to 5V F (Default) Set antenna voltage to 3.3V	\$gnssSet5vAnt T
\$gnssSetEnabled	T/F	Entirely enable or disable the GNSS task	\$gnssSetEnabled t
\$gnssSetDuration	s/m/h/d	Set the duration of the GNSS receiver (0 for always on)	\$gnssSetDuration 1h
\$gnssSetInterval	s/m/h/d	Set how often the GNSS task runs	\$gnssSetInterval 1d
\$gnssSetOffset	s/m/h/d	Set the time offset of the GNSS task	\$gnssSetOffset 12h
\$gnssSetUseGnssTime	T/F	T (true) enables GNSS time (no leap seconds), F (false) disabled	\$gnssSetUseGnssTime t
IP Tunnel – RUDICS or Cell			
\$irdSetDod	T/F	T Enables Iridium DISA/DOD Gateway F Disables DISA gateway to use Commercial Gateway	\$irdSetDod T
\$iridiumSetCommercialNumber	[number]	If DOD is set to False , set the Iridium RUDICS dial number (DNIS) of the installed SIM to allow RUDICS operation	\$iridiumSetCommercialNumber 008988XXXXXXXX
\$tunnelSetEnabled	T/F	Entirely enable or disable the IP Tunnel task	\$tunnelSetEnabled T
\$tunnelSetModem	[<0-3>]	Sets the priority of multiple cell and iridium	\$tunnelSetModem 0 3

	[<2-3>]	modems	
\$tunnelGetModems		Returns each modem to use for IP tunnel, and their priority.	\$tunnelGetModems
\$tunnelSetDuration	s/m/h/d	Set the duration of the IP tunnel connection	\$tunnelSetDuration 600s
\$tunnelSetInterval	s/m/h/d	Set the interval of the IP tunnel	\$tunnelSetInterval 1h
\$tunnelSetOffset	s/m/h/d	Set the time offset of the IP tunnel	\$tunnelSetOffset 20m
Iridium SBD			
\$sbdSetEnabled	T/F	Entirely enable or disable the Iridium Short Burst Data (SBD) task	\$sbdsetenabled T
\$sbdSetInterval	s/m/h/d	Set the interval of the SBD task	\$sbdsetinterval 4h
\$sbdSetOffset	s/m/h/d	Set the time offset of the SBD task	\$sbdsetoffset 0
900 MHz Radio			
\$radioSetEnabled	T/F	Returns the enabled state of the radio	\$radioSetEnabled F
\$radioSetChannelID A	<0 – 7>	Sets the radio channel	\$radioSetChannelID A 1
GNSS			
\$gnssListAntennaTypes		List the antenna types and their numerical values	\$gnssListAntennaTypes
\$gnssSetAntennaType	See <u>Appendix B</u>	Set the antenna reference point, also used for RINEX header	\$gnsssetantennatype 0
\$gnssSetAntennaOffsets	4 Dec. Places Ea. [E Offset] [N Offset] [U Offset]	Set the antenna offset for RINEX header	\$gnssSetAntennaOffsets 9.1234 3.21234 0
\$gnssSetAntennaSerialNumber	Max 20 Char	Set antenna offset for RINEX header	\$gnssSetAntennaSerialNumber 9999
\$gnssSetAntennaSetupId	Max 32-Bit Int	Set antenna setup ID for RINEX header	\$gnssSetAntennaSetupId id
\$gnssSetMarkerName	Max 60 Char	Set marker name for RINEX header	\$gnssSetMarkerName name
\$gnssSetMarkerNumber	Max 20 Char	Set marker number for RINEX header	\$gnssSetMarkerNumber number
\$gnssSetMarkerType	Max 20 Char	Set marker type for RINEX header	\$gnssSetMarkerType marker info

\$gnssSetObserverName	Max 20 Char	Set observer name for RINEX header	\$gnssSetObserverName GARY
\$gnssSetObserverAgency	Max 40 Char	Set observer agency for RINEX header	\$gnssSetObserverAgency WWE
\$gnssSetObserverComment	Max 100 Char	Set observer comment for RINEX header	\$gnssSetObserverComment Res FW 4162
\$gnssSetMessageTypes	[stream] [duration] [update [interval] [Bitmap A] [Bitmap B]	GNSS message configuration bitmaps	\$gnssSetMessageTypes 1 0 2 1 0
\$gnssSetSignalTracking	[signals (in HEX)]	GNSS signal tracking configuration bitmaps	\$gnssSetSignalTracking 1f
SD Card Function/Memory			
\$SDSetMemoryManagement	T/F	Enable/Disable "delete" function	\$sdSetMemoryManagement F
\$MemoryManagementSetDisks	<1 – 3>	1 - Enable delete on SD1 2 - Enable delete on SD2 3 - Enable delete on both disks	\$memoryManagementSetDisks 2
\$formatSD	[card] [format]	Format an SD card Card – 1 or 2 Format – 1 = FAT32, 2 = exFAT	\$formatSD 2 1
\$SetShutdownVoltageEnabled	T/F	Set if cards are unmounted at a specific voltage	\$SetShutdownVoltageEnabled T
\$SetShutdownVoltage	[Voltage]	Set the low voltage threshold at which cards are unmounted This value is always set lower than restart voltage.	\$SetShutdownVoltage 11.5
\$SetRestartVoltage	[Voltage]	Set the voltage threshold at which cards are remounted This value is always set higher than shutdown voltage.	\$SetRestartVoltage 11.8

ASCII External Sensor			
\$AESSetEnabled	T/F	Set ASCII External Sensor Logging enabled	\$AESSetEnabled T
\$AESSetDuration	s/m/h/d	Set ASCII External Sensor Logging timeout duration	\$AESSetDuration 1m
\$AESSetInterval	s/m/h/d	Set ASCII External Sensor Logging interval	\$AESSetInterval 1h
\$AESSetOffset	s/m/h/d	Set ASCII External Sensor Logging Offset	\$AESSetOffset 15m
\$AESSetCommandString	[string]	Set ASCII External Sensor Logging Request String	\$AESSetCommandString 0R0
\$AESSetPowerControlEnabled	<0 - 2>	Set whether switched power control is enabled for the ASCII external sensor 0 = OFF 1 = Power Switch 1, Pin H, 14-Pin Connector 2 = Power Switch 2, Pin M, 14-Pin Connector	\$AESSetPowerControlEnabled 2
\$AESSetPowerupDelay	<0 - 60000>	Set the delay (in milliseconds) before attempting to query the ASCII external sensor after switched power is applied	\$AESSetPowerUpDelay 2500
Serial 2 Port			
\$serial2SetEnabled	T/F	Set the current enabled/disabled state for the calculation serial port.	\$serial2SetEnabled T
\$Serial2SetBaud	[baud]	Set Serial 2 Baud Rate	\$Serial2SetBaud 19200
\$serial2SetCommsMode	[mode]	Set the comms mode of Serial 2 (0 = Full-Duplex, 1 = Half-Duplex)	\$serial2SetCommsMode 1
\$serial2SetFlow	T/F	Set the current enabled/disabled state of RTS/CTS flow control	\$serial2Setflow T
\$serial2SetPortMode	[mode]	Set the port mode of Serial 2 (0 = RS-232, 1 = RS485)	\$serial2SetPortMode 0
\$serial2Test		Transmit a test string out serial 2 for hardware testing, or send from Serial2 to test inbound to Resolute.	\$serial2Test

SDI-12 Master			
\$sdi12MasterSetEnabled	T/F	Set the enabled/disabled state of the SDI-12 interface in 'master' mode	\$sdi12MasterSetEnabled T
\$sdi12MasterSetInterval	s/m/h/d	Set the interval between SDI-12 interface requests	\$sdi12MasterSetInterval 10m
\$sdi12MasterSetOffset	s/m/h/d	Set the schedule offset for the SDI-12 Master task	\$sdi12MasterSetOffset 2m
\$sdi12SetAddress	<0 – 9>	Set the current local address of the SDI-12 interface	\$sdi12SetAddress 1
\$sdi12SetPowerControlEnabled		Set whether switched power control is enabled for the external SDI-12 sensor 0 = OFF 1 = Power Switch 1, Pin H, 14-Pin Connector 2 = Power Switch 2, Pin M, 14-Pin Connector	\$sdi12SetPowerControlEnabled 2
\$sdi12SetPowerUpDelay	<0 – 60000>	Set the delay (in milliseconds) before attempting to query the SDI-12 external sensor after switched power is applied	\$sdi12SetPowerUpDelay 2500
\$sdi12SetExtSenCmdEnabled	T/F	Set the ability to send custom command string to a device on the SDI-12 bus	\$sdi12SetExtSenCmdEnabled T
\$sdi12SetExtSenCmdString	[string]	Set the command string to send to a device on the SDI-12 bus	\$sdi12SetExtSenCmdString 0R0!

Switched Power Output (1	4-Pin Connector, Blu	ue Outline)	
\$pwrSetSwitch	[switch] [on/off]	Use switched power on 14-Pin Connector (Blue) [switch] 1 - Power Switch 1, Pin H 2 - Power Switch 2, Pin M	\$pwrSetSwitch 1 1
\$pwr1SetEnabled	T/F	Enable/Disable schedule for Pwr Sw 1, Pin H, 14-Pin Connector (Blue)	\$pwr1SetEnabled T
\$pwr1SetDuration	s/m/h/d	Set the duration for Pwr Sw 1, Pin H, 14-Pin Connector (Blue)	\$pwr1SetDuration 5m
\$pwr1SetInterval	s/m/h/d	Set the interval for Pwr Sw 1, Pin H, 14-Pin Connector (Blue)	\$pwr1SetInterval 20m
\$pwr1SetOffset	s/m/h/d	Set the offset for Pwr Sw 1, Pin H, 14-Pin Connector (Blue)	\$pwr1SetOffset 15m
\$pwr2SetEnabled	T/F	Enable/Disable schedule for Pwr Sw 2, Pin M, 14-Pin Connector (Blue)	\$pwr2SetEnabled F
\$pwr2SetDuration	s/m/h/d	Set the duration for Pwr Sw 2, Pin M, 14-Pin Connector (Blue)	\$pwr2SetDuration 1h
\$pwr2SetInterval	s/m/h/d	Set the interval for Pwr Sw 2, Pin M, 14-Pin Connector (Blue)	\$pwr2SetInterval 3h
\$pwr2SetOffset	s/m/h/d	Set the offset for Pwr Sw 2, Pin M, 14-Pin Connector (Blue)	\$pwr2SetOffset 30m

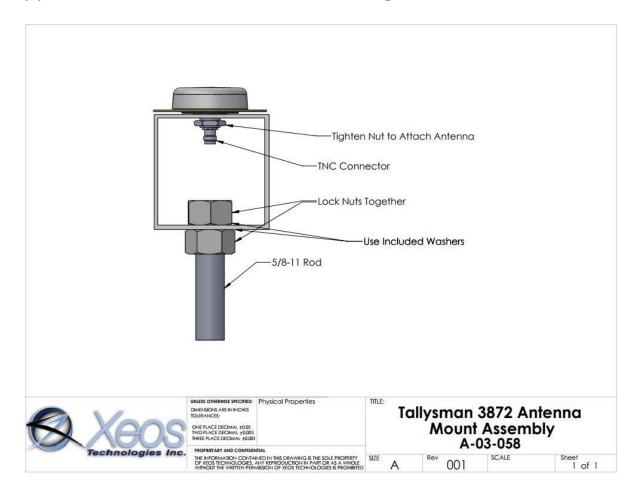
Appendix B: Antenna Type Index

The Antenna type connected to the Resolute can be added with the **\$gnssSetAntennaType** command. The identity of the antenna is sent to the GNSS module for input to the SBF files for future reference. **\$gnssGetAntennaList** presents this list to diagnostics.

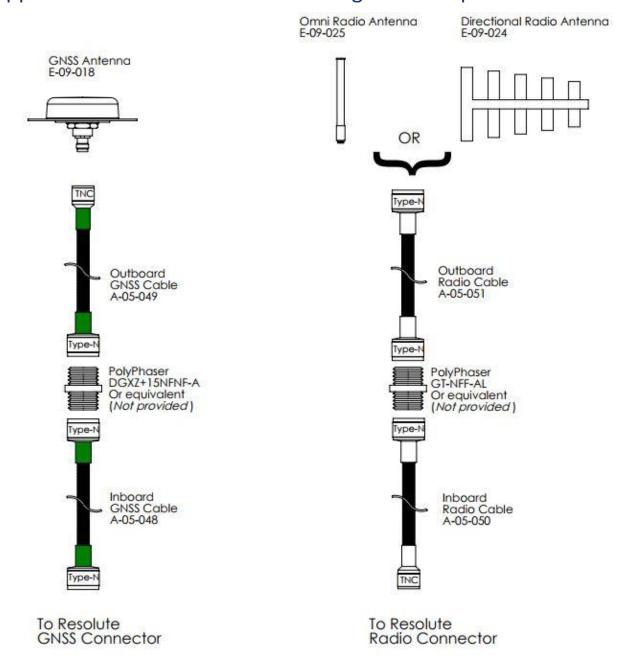
If the GNSS antenna to be used is not in this list, contact Xeos support. Additional antennas can be added (if verified to be supported) to the index in the Resolute firmware.

0: TWI3870+GP	42: AERAT1675 81	84: ASH700829.3 SNOW
1: SEPPOLANT_X_MF	- 43: AERAT2775_150	85: ASH700829.A SNOW
2: 3S-02-TSADM	44: AERAT2775 159	86: ASH700829.A1 SNOW
3: 3S-02-TSATE		87: ASH700936A M
4: ACC123CGNSSA XN	46: AERAT2775 160	88: ASH700936A M SNOW
5: ACC2G1215A_XT_1	47: AERAT2775 270	89: ASH700936B M
6: ACC3G1215A_XT_1	48: AERAT2775 382	90: ASH700936B_M SNOW
7: ACC42G1215A_XT1	49: AERAT2775 41	91: ASH700936C M
8: ACC4G1215A_XT_1	50: AERAT2775 42	92: ASH700936C M SNOW
9: ACC53G1215A XT1	51: AERAT2775 42+CR	93: ASH700936D M
10: ACC53GO1215AXT1	52: AERAT2775 43	94: ASH700936D M SCIS
11: ACC72CGNSSA		95: ASH700936D_M SNOW
12: ACC72GNSSA XT 1	54: AERAT2775 443	96: ASH700936E
13: ACCG3ANT_3AT1		97: ASH700936E SNOW
14: ACCG3ANT 42AT1	56: AERAT2775 62	98: ASH700936E_C
	57: AERAT3075_460	99: ASH700936E_C SNOW
16: ACCG5ANT 123CAN	58: AOA7490582.2	100: ASH700936F C
17: ACCG5ANT 2AT1	59: AOAD/M B	101: ASH701008.01B
18: ACCG5ANT_3AT1	60: AOAD/M_R	102: ASH701023.A
19: ACCG5ANT_42AT1	61: AOAD/M_T	103: ASH701073.1
20: ACCG8ANT-CHOKES	62: AOAD/M_TA_NGS	104: ASH701073.3
21: ACCG8ANT_3A4TB1	63: AOARASCAL	105: ASH701933A_M
22: ACCG8ANT_3A4_M1	64: APSAPS-3	106: ASH701933A_M SNOW
23: ACCG8ANT_52A4T1	65: APSAPS-3L	107: ASH701933B_M
24: ACCG8ANT_52A4TC	66: APSAPS-NR2	108: ASH701933B_M SNOW
25: ACC_G5ANT_52AT1	67: APS_APS-3	109: ASH701933C_M
26: ACC_G5ANT_72AT1	68: APS_APS-3 SCIT	110: ASH701933C_M SCIS
27: AERAT1675_120	69: ASH110454	111: ASH701933C_M SCIT
28: AERAT1675_120 SPKE	70: ASH111660	112: ASH701933C_M SNOW
29: AERAT1675_180	71: ASH111661	113: ASH701941.1
30: AERAT1675_182	72: ASH700228A	114: ASH701941.2
31: AERAT1675_200	73: ASH700228B	115: ASH701941.A
32: AERAT1675_200 SPKE	74: ASH700228C	116: ASH701941.B
33: AERAT1675_29	75: ASH700228D	117: ASH701941.B SCIS
34: AERAT1675_300	76: ASH700228E	118: ASH701945B_M
35: AERAT1675_300 SPKE	77: ASH700699.L1	119: ASH701945B_M SCIS
36: AERAT1675_304	78: ASH700700.A	120: ASH701945B_M SCIT
37: AERAT1675_32	79: ASH700700.B	121: ASH701945B_M SNOW
38: AERAT1675_382	80: ASH700700.C	122: ASH701945C_M
39: AERAT1675_39	81: ASH700718A	123: ASH701945C_M OLGA
40: AERAT1675_504	82: ASH700718B	124: ASH701945C_M PFAN
41: AERAT1675_80	83: ASH700829.2 SNOW	125: ASH701945C_M SCIS

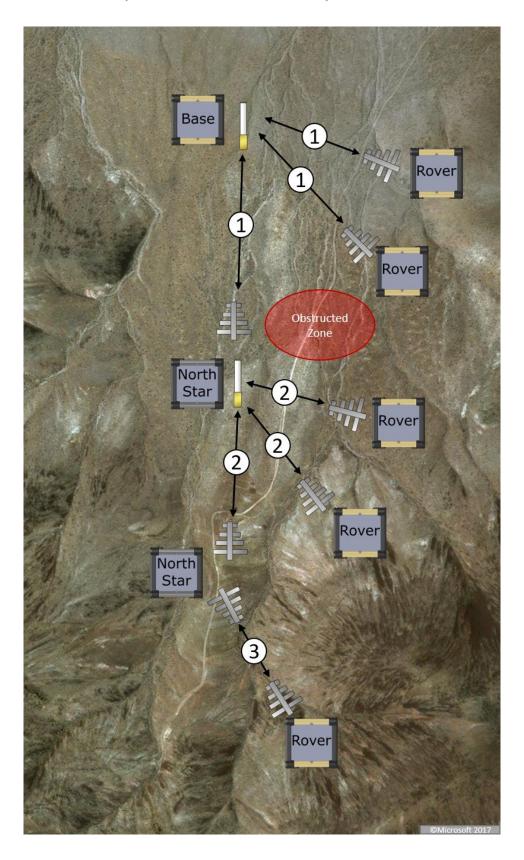
126: ASH701945C_M SCIT	179: HEMA45	232: JNSMARANT_GGD
127: ASH701945C_M SNOW	180: HEMA52_WB	233: JPLD/M_R
128: ASH701945D_M	181: HEMS320	234: JPLD/M_RA_SOP
129: ASH701945D_M SCIS	182: HGGCYH8321 HGGC	235: JPSLEGANT_E
130: ASH701945D_M SCIT	183: HGGCYH8321	236: JPSMARANT_GGD
131: ASH701945D_M SNOW	184: HITV30	237: JPSODYSSEY_I
132: ASH701945E_M	185: HITV60	238: JPSREGANT_DD_E
133: ASH701945E_M SCIS	186: HRZK2007224V3.0	239: JPSREGANT_DD_E1
134: ASH701945E_M SCIT	187: HXCCA7607A	240: JPSREGANT_DD_E2
135: ASH701945E_M SNOW	188: HXCCG7601A HXCG	241: JPSREGANT_SD_E
136: ASH701945G_M	189: HXCCG7601A	242: JPSREGANT_SD_E1
137: ASH701945G M SCIS	190: HXCCG7602A HXCG	243: JPSREGANT_SD_E2
138: ASH701945G_M SCIT	191: HXCCG7602A	244: KOLK9_T
139: ASH701945G M SNOW	192: HXCCGX601A HXCS	
140: ASH701946.2	193: HXCCGX601A	246: LEIAR20 LEIM
141: ASH701946.2 SNOW	194: HXCCSX601A	247: LEIAR20
142: ASH701946.3	195: HXCGG486A HXCS	248: LEIAR25 LEIT
143: ASH701946.3 SNOW	196: HXCGG486A	249: LEIAR25
144: ASH701975.01A	197: HXCGS488A	250: LEIAR25 SCIS
145: ASH701975.01AGP	198: ITT3750323	251: LEIAR25 SCIT
146: ASH701975.01B	199: ITT3750323 SCIS	252: LEIAR25.R3 LEIT
147: ASH701975.01B	200: JAVGISMORE	253: LEIAR25.R3
148: ASH802129	201: JAVGISMORE	254: LEIAR25.R3 SCIS
	201: JAVGRANT_G3 202: JAVGRANT_G3+GP JVGR	255: LEIAR25.R3 SCIT
149: ASH802147_A	_	
150: ASH_LOCUS	203: JAVGRANT_G3+GP	256: LEIAR25.R4 LEIT
151: AYIHY-BGLRB06RT	204: JAVGRANT_G3TJ	257: LEIAR25.R4
152: CHANV3	205: JAVGRANT_G3TJ+G JVGR	258: LEIAR25.R4 SCIS
153: CHATK2	206: JAVGRANT_G3TJ+G	259: LEIAR25.R4 SCIT
154: CHATKO	207: JAVGRANT_G5T	260: LEIAS05
155: CHCA220GR	208: JAVGRANT_G5T+GP JVGR	261: LEIAS10
156: CHCA300GNSS	209: JAVGRANT_G5T+GP	262: LEIAT202+GP
157: CHCC220GR CHCD	210: JAVRINGANT_DM JVDM	263: LEIAT202-GP
158: CHCC220GR	211: JAVRINGANT_DM	264: LEIAT302+GP
159: CHCX900B	212: JAVRINGANT_DM SCIS	265: LEIAT302-GP
160: CHCX900R	213: JAVRINGANT_DM SCIT	266: LEIAT303 LEIC
161: CHCX900S-OPUS	214: JAVRINGANT_G5T JAVC	267: LEIAT303
162: CHCX90D-OPUS	215: JAVRINGANT_G5T	268: LEIAT502
163: CHCX91+S	216: JAVTRIANT_A	269: LEIAT503 LEIC
164: CHCX91B	217: JAVTRIUMPH_1M	270: LEIAT503
165: CHCX91R	218: JAVTRIUMPH_1MR	271: LEIAT504 LEIS
166: CNTT300	219: JAVTRIUMPH_2A	272: LEIAT504
167: CNVC-NAV286	220: JAVTRIUMPH_LSA	273: LEIAT504 OLGA
168: DGR_QEDGE	221: JAVTRIUMPH_VS	274: LEIAT504 SCIS
169: FOIA30	222: JAV_GRANT-G3T	275: LEIAT504GG LEIS
170: GDCGS1HX-BS601	223: JAV_GRANT-G3T+G JVGR	276: LEIAT504GG
171: GMXZENITH10	224: JAV_GRANT-G3T+G	277: LEIAT504GG SCIS
172: GMXZENITH20	225: JAV_RINGANT_G3T JAVC	278: LEIAT504GG SCIT
173: GMXZENITH25	226: JAV_RINGANT_G3T	279: LEIATX1230
174: GMXZENITH25PRO	227: JAV_TRIUMPH-1	280: LEIATX1230+GNSS
175: GUTGPSL1L2A	228: JAV_TRIUMPH-1R	281: LEIATX1230GG
176: HEMA21	229: JNSCHOKERING_DM	282: LEIAX1202
177: HEMA325	230: JNSCR_C146-22-1	283: LEIAX1202A
178: HEMA42	231: JNSCR_C146-22-1 SCIS	284: LEIAX1202GG


285: LEIAX1203+GNSS	338: NOV702GG_1.03	391: SPP91564_00	
286: LEIGG02PLUS	339: NOV702L_1.01	392: SPP91564_1	
287: LEIGG03	340: NOV702L_1.03	393: SPP91564_2	
288: LEIGS08	341: NOV702_2.02	394: STH82VHX-BS601A	
289: LEIGS08PLUS	342: NOV702_3.00	395: STHCR3-G3	
290: LEIGS09	343: NOV703GGG.R2	396: STHCR3-G3 STHC	
291: LEIGS12	344: NOV750.R4	397: STHS82HX-BS601A	
292: LEIGS14	345: NOV750.R4 NOVS	398: STHS82_7224V3.0	
293: LEIGS15	346: NOV750.R4 SCIS	399: STHS86HX-BS611A	
294: LEIICG60	347: NOV750.R4 SCIT	400: STHS86_7224V3.1	
295: LEIMNA950GG	348: NOV750.R5 NOVS	401: STXG5ANT_72AT1	
296: LEISR299_INT	349: NOV_WAAS_600	402: STXS8BS603A	
297: LEISR399_INT	350: RNG80971.00	403: STXS8PX003A	
298: LEISR399_INTA	351: SEN67157514	404: STXS9+X001A	
299: MAC4647942 MMAC	352: SEN67157514+CR	405: STXS9BS604A	
300: MAC4647942	353: SEN67157549	406: STXS9PX001A	
301: MAG105645	354: SEN67157549+CR	407: STXS9SA7224V3.0	
302: MAG111406	355: SEN67157596	408: THA800961+REC	
303: MAG990596	356: SEN67157596+CR	409: THA800961+RTK	
304: MPL1230	357: SEPCHOKE MC	410: THA800961RECUHF	
305: MPL1370W	358: SEPCHOKE_MC SPKE	411: THA800961RTKUHF	
306: MPLL1/L2_SURV	359: SEPPOLANT_X_MF	412: THANAPO02	
307: MPL_WAAS_2224NW	360: SEPPOLANT_X_SF	413: TIAPENG2100B	
308: MPL_WAAS_2225NW	361: SEP_POLANT+	414: TIAPENG2100B	
309: NAVAN2004T	362: SEP_POLANT+_GG	415: TIAPENG3100R1	
310: NAVAN20041	363: SLGSL600_V1	416: TIAPENG3100R1	
	364: SMICR3B	417: TIASMT888-3GV3	
311: NAVANT3001A			
312: NAVANT3001B	365: SMICR3B SPKE	418: TOP700779A	
313: NAVRT3010S	366: SOK502	419: TOP72110	
314: NAVSF2040G	367: SOK600	420: TPSCR.G3	
315: NAVSF3040	368: SOK702	421: TPSCR.G3 SCIS	
316: NAV_ANT3001BR SPKE	369: SOKA110	422: TPSCR.G3 SCIT	
317: NAV_ANT3001R	370: SOKA120	423: TPSCR.G3 TPSH	
318: NAX3G+C	371: SOKGRX1	424: TPSCR.G5	
319: NGSD/M+GP60	372: SOKGRX1+10	425: TPSCR.G5 SCIS	
320: NOV501	373: SOKGRX2	426: TPSCR.G5 SCIT	
321: NOV501+CR	374: SOKGRX2+10	427: TPSCR.G5 TPSH	
322: NOV502	375: SOKGSX2	428: TPSCR3_GGD CONE	
323: NOV502+CR	376: SOKGSX2+10	429: TPSCR3_GGD	
324: NOV503+CR	377: SOKSTRATUS	430: TPSCR3_GGD OLGA	
325: NOV503+CR SPKE	378: SOK_GSR2700IS	431: TPSCR3_GGD PFAN	
326: NOV512	379: SOK_GSR2700ISX	432: TPSCR4 CONE	
327: NOV531	380: SOK_LOCUS	433: TPSCR4	
328: NOV531+CR	381: SOK_RADIAN_IS	434: TPSG3_A1	
329: NOV533 RADM	382: SPP39105.90	435: TPSG3_A1 TPSD	
330: NOV533+CR NOVC	383: SPP571212238+GP	436: TPSGR3	
331: NOV600	384: SPP571908273+CR	437: TPSGR5	
332: NOV701GGL	385: SPP571908273+CR SPKE	438: TPSHIPER_GD	
333: NOV701GG_1.03	386: SPP67410_42	439: TPSHIPER_GGD	
334: NOV702	387: SPP67410_44	440: TPSHIPER II	
335: NOV702GG	388: SPP67410_46	441: TPSHIPER_II+10	
336: NOV702GGL 1.01	389: SPP68410 10	442: TPSHIPER_LITE	
337: NOV702GG_1.02	390: SPP89823_10	443: TPSHIPER_PLUS	

444: TPSHIPER_SR	477: TRM22020.00+GP	510: TRM57971.00
445: TPSHIPER_SR+10	478: TRM22020.00-GP	511: TRM57971.00 SCIT
446: TPSHIPER_V	479: TRM22020.02 TCWD	512: TRM5800
447: TPSHIPER_V+10	480: TRM23903.00	513: TRM59800.00
448: TPSHIPER_XT	481: TRM27947.00+GP	514: TRM59800.00 SCIS
449: TPSLEGANT	482: TRM27947.00-GP	515: TRM59800.00 SCIT
450: TPSLEGANT2	483: TRM29659.00	516: TRM59800.80
451: TPSLEGANT3_UHF	484: TRM29659.00 OLGA	517: TRM59800.80 SCIS
452: TPSLEGANT_G	485: TRM29659.00 SCIS	518: TRM59800.80 SCIT
453: TPSMAPANT_B	486: TRM29659.00 SCIT	519: TRM59900.00
454: TPSMG_A2	487: TRM29659.00 SNOW	520: TRM59900.00 SCIS
455: TPSODYSSEY_I	488: TRM29659.00 TCWD	521: TRM65212.00
456: TPSPG_A1	489: TRM29659.00 UNAV	522: TRM77970.00
457: TPSPG_A1 TPSD	490: TRM33429.00+GP	523: TRM77971.00
458: TPSPG_A1+GP	491: TRM33429.00-GP	524: TRM77971.00 SCIT
459: TPSPG_A1_6	492: TRM33429.20+GP	525: TRMA3_L1
460: TPSPG_A1_6+GP	493: TRM33429.20+GP TCWD	526: TRMR10
461: TPSPG_A2	494: TRM33429.20+GP UNAV	527: TRMR4-2
462: TPSPG_A5	495: TRM36569.00+GP	528: TRMR4-3
463: TPSPG_F1	496: TRM39105.00	529: TRMR6
464: TPSPG_F1+GP	497: TRM41249.00	530: TRMR6-2
465: TPSPG_S1	498: TRM41249.00 SCIT	531: TRMR6-3
466: TPSPG_S1+GP	499: TRM41249.00 TZGD	532: TRMR6-4 NONE
467: TPSPN.A5	500: TRM41249USCG SCIT	533: TRMR8 NONE
468: TPSPN.A5 SCIS	501: TRM44830.00	534: TRMR8-4 NONE
469: TPSPN.A5 SCIT	502: TRM4800	535: TRMR8_GNSS NONE
470: TPSPN.A5 TPSH	503: TRM49700.00	536: TRMR8_GNSS3 NONE
471: TPS_CR.3 SCIS	504: TRM53406.00	537: TRMSPS985 NONE
472: TPS_CR4+RD SCIS	505: TRM55970.00	538: TWI3870+GP NONE
473: TPS_MC.A5	506: TRM55971.00	539: UNIUA35 NONE
474: TRM14177.00	507: TRM55971.00 SCIT	540: Unknown
475: TRM14532.00	508: TRM55971.00 TZGD	541: SEPPOLANTXMF.V2 NONE
476: TRM14532.10	509: TRM57970.00	



Appendix C: GNSS Antenna Mount Diagram



Appendix D: RF Cable Installation Diagram Example

Appendix E: Example RTK Network Map

Appendix F: Mechanical Specifications

Appendix G: Electrical Specifications

The following section specifies power requirements for various configurations of the Resolute with various use cases of duty cycling peripherals. Measurements can fluctuate as receivers and modems use varying power depending on the rate of transmitting, tracking settings and other factors.

General

Voltage Input: 5 – 27V Nominal; 32V Max

Switched Power Output: Voltage Input - 0.7V

Switched Power Output Current: Max 1.8A (Per Switch)

Continuous RTK (Resolute Pin):

Peripherals: Radio (Average Continuous), GNSS (GPS L1/L2, GLONASS L1/L2), TW3872 Antenna

Power Requirement: 1.4W

Reference Receiver

Peripherals: GNSS (GPS L1), TW3872 Antenna (Average Continuous)

Power Requirement: 1 W

Peripherals: GNSS (GPS L1 L2), TW3872 Antenna (Average Continuous)

Power Requirement: 1.25 W

Peripherals: GNSS (GPS, GLONASS, L1, L2), TW3872 Antenna (Average Continuous)

Power Requirement: 1.3 W

Peripherals: GNSS (All Signals), Nominal Antenna (Average Continuous)

Power Requirement: 1.5 W

Add Power for Configurable Length Peripherals

Iridium RUDICS (Average Continuous)

Iridium RUDICS Minimum Connection (Tunnel Connected, No Data)

Power Requirement: 1.85W Iridium RUDICS Data Transfer

Power Requirement: 3.8W

Iridium Short Burst Data (SBD)

SBD Message Check (Average Power, per check, Average check 36 seconds)

Power Requirement: 0.5W (36 seconds)

Appendix H: RxTools Download

Download the RxTools software and manual from **Septentrio**.

RX Tools contains the SBF Converter to convert SBF blocks to ASCII or RINEX. SBF Block info can be found in the SBF Reference Guide also in the link above.

Appendix I: Iridium Service

If the Resolute comes equipped with a 9523 Iridium Transceiver which makes use of the Iridium satellite system's RUDICS and Short Burst Data (SBD) services.

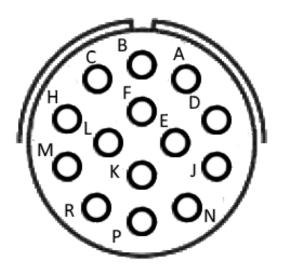
SBD service is a global, two-way, real-time, email-based data delivery service that has a maximum outbound (from unit) message size of 340 bytes and a maximum inbound (to unit) message size of 270 bytes.

Resolute end users/integrators must set up an approved data delivery account with their preferred service provider. Xeos is also an Iridium VAR and can provide Iridium service.

Setting up service requires the modem's 15-digit International Mobile Equipment Identity (IMEI) number, which is, if a modem is installed, affixed on the front of the Resolute enclosure.

Each IMEI number is capable of being associated with up to five (5) unique email addresses and/or IP addresses.

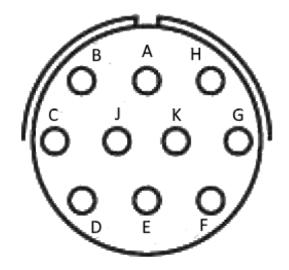
While any email application can be used to send and receive messages to the Resolute, XeosOnline is the easiest way to manage and monitor the Resolute. Messages contain a lot of information and XeosOnline presents that information in a readable format with date-filtered graphing and mapping interface.


If RUDICS is to be utilized, please contact Xeos for assistance in setting up and managing a RUDICS tunnel.

Appendix J: Connector Pinouts

Circular Connector, 14-Pin Female

Pin	Function
А	Serial 1 RS-232-Tx
В	No Connection
	1-PPS Output; OPTIONAL UPON REQUEST
С	SDI-12 Interface
D	Serial 1 RS-232-Rx
Е	Serial 1 RS-232-CTS
F	Ground
Н	Power Switch 1
J	Serial 1 RS-232-RTS
K	Ground
L	Serial 2 RS-232-RTS
М	Power Switch 2
N	Serial 2 RS-232-Tx
Р	Serial 2 RS-232-Rx
R	Serial 2 RS-232-CTS



^{*}Note: PPS is optionally connected; this feature must be requested from the factory at time of purchase.

Circular Connector, 10-Pin Female

Pin	Function
Α	Voltage Input, 5 – 27V Nominal; 32V Max
В	Ground
С	Ethernet RD-
D	Ethernet RD+
Е	Ethernet TD-
F	Ethernet TD+
G	Ground
Н	CANBUS-High
J	CANBUS-Low
K	Ground

Warranty, Support and Limited Liability

Xeos by Satlink warranties the Resolute to be free of defects in material or manufacturing for a period of one year following delivery. Liability is limited to repair or replacement of the defective part and will be done free of charge.

LIMITED WARRANTY: Xeos by Satlink warrants that the product will perform substantially in accordance with the accompanying written materials for a period of one year from the date of receipt.

CUSTOMER REMEDIES: Xeos by Satlink entire liability and your exclusive remedy shall be at Xeos' option, either (a) return of the price paid or (b) repair or replacement of the product that does not meet Xeos' Limited Warranty and that is returned to Xeos with a copy of your receipt. This Limited Warranty is void if failure of the product has resulted from accident, abuse, or misapplication. Any replacement product will be warranted for the remainder of the original warranty period or ninety (90) days, whichever is longer.

NO OTHER WARRANTIES: Xeos by Satlink disclaims all other warranties, either express or implied, including but not limited to implied warranties of merchantability and fitness for a purpose, with respect to the product or the accompanying written materials. This limited warranty gives you specific legal rights. You may have others, which vary from state to state.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES: In no event shall Xeos by Satlink or its suppliers be liable for any damages whatsoever (including, without limitation, damages for loss of equipment, for loss of business profits, business interruption, loss of business information, or other pecuniary loss) arising out of the use of or inability to use this Xeos product, even if Xeos has been advised of the possibility of such damages.